5 Best Bitcoin Mining Hardware ASIC Machines (2020 Rigs)

Full overview of Eth 2.0 & 1.x roadmaps from Messari

Full section on Messari's Ethereum trends for 2020 here

ETH 2.0 Research/Governance/Roadmap at a glance

If history is any guide, we’re not going to see ETH 2.0 until 2022 at the earliest, even if the earliest phases of “Serenity” begin getting pushed in mid-2020. ETH 2.0’s rollout breaks down into seven (7!!!) phases and brings with it the promise of staking, sharding, a new virtual machine, and more dancing badgers.
(One of our analysts, Wilson Withiam, put together an excellent overview of both the ETH 2.0 and ETH 1.x roadmaps for this report. They are critical to track and understand at a high-level given how much Ethereum’s performance will affect other competitive projects and most of the DeFi and Web 3 infrastructure. So these next two sections are longer and more technical.)
Here’s what you need to know about the current game plan for crypto’s largest platform.
Phase 0 marks the launch of the “beacon chain”, which will serve as the backbone for a new blockchain. The beacon chain will manage network validators (large early stakers like ConsenSys) and ultimately assign validators to individual shards (slicing the new blockchain into smaller chunks is a key, difficult, controversial scaling decision that’s been made). The new chain will support Ethereum’s new proof-of-stake consensus mechanism, and offer inflation rewards with new ETH2 for those that pony up and lock 32 ETH1 tokens into an irreversible contract. That one way bridge into the new system is also contentious, but it means ETH1 supply will start getting “effectively burned” once token holder begin claiming beacon chain validator slots. Initial reports claimed Jan. 3 as a realistic launch date (lol). It will be amazing to see this launched by end of June.
Phase 1 will introduce 64 individual shard chains (reduced from 1,024!!!) to the network, with the option to increase the total down the road as the design gets tested. The Ethereum elite see sharding as the “key to future scalability” as shards can parallelize transaction processing, something that could improve network performance and reduce individual validator’s costs (good for decentralization). It comes with big risk: this is still theoretical. No network the size of Ethereum has successfully sharded its blockchain. In Phase 1, shard chains will only contain simple data sets (no smart contracts or transaction executions) to test the system’s structure. As with Phase 0, the beacon chain will continue to run in parallel with ETH 1.x throughout the phase. Don’t expect Phase 1 anytime before 2021.
Phase 2 marks the full launch of the ETH2 chain, allowing for on-chain contract execution and introducing the new eWASM virtual machine (dubbed EVM 2.0). At this point, existing dApps can start migrating their contracts from ETH 1.x to a specific shard (one shard per contract) in the new network. Storage rent, charging contract owners for storing data on the network (more on this below), is in the cards as well, which would require mass contract rewrites. Even though Phase 2 intends to replace the original Ethereum blockchain entirely, ETH 1.x may still live on as a shard within ETH2. (How confused are you by now? See why bitcoin will still dominate the macro narrative for a while?) A late 2021 release for Phase 2 is optimistic. Before the end of 2022 would be a win.
The final four phases are less defined, and without an attached timeline:
Phase 3 implements state-minimized clients (because stateless clients are just too much). Phase 4 allows for cross-shard transactions. Phase 5 improves network security and the availability of data proofs. Phase 6 introduces meta-shards, as in “shards within shards within shards,” for near-infinite scaling. If you’re scratching your head and are sadistic enough to read more, the Sharding Wiki page does note, “this may be difficult.”
Scaling and compilation efficiencies aside, the most notable change in Ethereum’s metamorphosis is the transition from proof-of-work to proof-of-stake. PoW is the more battle tested security model for blockchain networks, while PoS may prove to be more efficient but with new and less obvious attack vectors. For the more technical, we recommend reading Bison Trails’ Viktor Bunin on the subject of PoS security threats.
Past research has also shown PoS requires an extra layer of “trust” vs. PoW, to help nodes sync to the network. Most models share specific characteristics to address this trust issue, such as allowing for a dynamic set of validators (rotate your security), promoting token holder participation in consensus, and assessing steep penalties (slashing) for any network participant that violates the protocol guidelines. ETH 2.0 will function similarly, but may be able to learn from other PoS networks (and their R&D) as well as those come live and see real world issues. As Vitalik points out, recent research in PoS resulted in “great theoretical progress,” But...
Listen, we're talking about practice. Not a game. Not a game. Not a game. We're talking about practice. Not a game….Practice? We're talking about practice, man? We're talking about practice. We're talking about practice. We ain't talking about the game. We're talking about practice, man.
Vitalik was eight when this happened, so the clip might help and prove metaphoric.

2 ETH 1.x Research/Governance/Roadmap at a glance.

Ok, one more. Bear with us. Let’s reiterate, ETH 2.0 is a brand new blockchain. It’s going to be a chaotic and high-risk transition. In the meantime, the existing network needs to run existing applications (particularly financial settlements for DeFi transactions). More critical upgrades are needed in the current system.
To that end, ETH 1.x devs have three goals to boost performance and reduce blockchain bloat: (1) introduce client optimizations that increase transaction capacity; (2) cap disk space requirements and prune old, memory-sucking data (so running a node is less expensive and more decentralized); and (3) upgrade the EVM to eWASM, a newer open standard for code compilers that simplifies debugging, and is also used by all the newer smart contract platforms. ETH 1.x developers have decided to split the major tasks amongst four working groups:

Core developers intend to introduce most of these implementations through a series of hard forks, the latest of which activated just over a week ago (Istanbul, Dec. 7). However, Istanbul’s second phase, tentatively scheduled for Q2 next year, has Ethereans at each other’s throats. The controversy boils down to the fork’s inclusion of ProgPoW, an ASIC-resistant hashing algorithm designed to replace Ethereum’s current algo. ProgPoW aims to even the playing field for GPU miners and ward off the entrance of potential ASIC competitors. The miners like that. But many miners and investors see ProgPoW as a threat to their investments. For miners, the change would shift the power dynamic away from mining farms and render expensive, specialized mining hardware useless. Ethereum (and ERC-20) investors intent on securing their assets might balk because ASIC miners typically prop up hash rates (overall chain security) and their costs “naturally create a price-floor for ASK prices of miners’ sell-orders.”
This saga is far from over. The infighting will likely continue leading up to ProgPoW’s activation date mid-next year, and presents the strongest potential for a network split since “The DAO” fork that spawned Ethereum Classic. The looming transition to ETH 2.0 (and proof-of-stake) will likely deter investor pushback, because it’s a short-term battle in a war the miners are ultimately going to lose, anyway.
Unless the roadmap changes back to supporting a hybrid PoW/PoS system, of course, but... Oh my god, I’m just kidding. This section is mercifully over.
submitted by CryptigoVespucci to ethereum [link] [comments]

Transcript of discussion between an ASIC designer and several proof-of-work designers from #monero-pow channel on Freenode this morning

[08:07:01] lukminer contains precompiled cn/r math sequences for some blocks: https://lukminer.org/2019/03/09/oh-kay-v4r-here-we-come/
[08:07:11] try that with RandomX :P
[08:09:00] tevador: are you ready for some RandomX feedback? it looks like the CNv4 is slowly stabilizing, hashrate comes down...
[08:09:07] how does it even make sense to precompile it?
[08:09:14] mine 1% faster for 2 minutes?
[08:09:35] naturally we think the entire asic-resistance strategy is doomed to fail :) but that's a high-level thing, who knows. people may think it's great.
[08:09:49] about RandomX: looks like the cache size was chosen to make it GPU-hard
[08:09:56] looking forward to more docs
[08:11:38] after initial skimming, I would think it's possible to make a 10x asic for RandomX. But at least for us, we will only make an ASIC if there is not a total ASIC hostility there in the first place. That's better for the secret miners then.
[08:13:12] What I propose is this: we are working on an Ethash ASIC right now, and once we have that working, we would invite tevador or whoever wants to come to HK/Shenzhen and we walk you guys through how we would make a RandomX ASIC. You can then process this input in any way you like. Something like that.
[08:13:49] unless asics (or other accelerators) re-emerge on XMR faster than expected, it looks like there is a little bit of time before RandomX rollout
[08:14:22] 10x in what measure? $/hash or watt/hash?
[08:14:46] watt/hash
[08:15:19] so you can make 10 times more efficient double precisio FPU?
[08:16:02] like I said let's try to be productive. You are having me here, let's work together!
[08:16:15] continue with RandomX, publish more docs. that's always helpful.
[08:16:37] I'm trying to understand how it's possible at all. Why AMD/Intel are so inefficient at running FP calculations?
[08:18:05] midipoet ([email protected]/web/irccloud.com/x-vszshqqxwybvtsjm) has joined #monero-pow
[08:18:17] hardware development works the other way round. We start with 1) math then 2) optimization priority 3) hw/sw boundary 4) IP selection 5) physical implementation
[08:22:32] This still doesn't explain at which point you get 10x
[08:23:07] Weren't you the ones claiming "We can accelerate ProgPoW by a factor of 3x to 8x." ? I find it hard to believe too.
[08:30:20] sure
[08:30:26] so my idea: first we finish our current chip
[08:30:35] from simulation to silicon :)
[08:30:40] we love this stuff... we do it anyway
[08:30:59] now we have a communication channel, and we don't call each other names immediately anymore: big progress!
[08:31:06] you know, we russians have a saying "it was smooth on paper, but they forgot about ravines"
[08:31:12] So I need a bit more details
[08:31:16] ha ha. good!
[08:31:31] that's why I want to avoid to just make claims
[08:31:34] let's work
[08:31:40] RandomX comes in Sep/Oct, right?
[08:31:45] Maybe
[08:32:20] We need to audit it first
[08:32:31] ok
[08:32:59] we don't make chips to prove sw devs that their assumptions about hardware are wrong. especially not if these guys then promptly hardfork and move to the next wrong assumption :)
[08:33:10] from the outside, this only means that hw & sw are devaluing each other
[08:33:24] neither of us should do this
[08:33:47] we are making chips that can hopefully accelerate more crypto ops in the future
[08:33:52] signing, verifying, proving, etc.
[08:34:02] PoW is just a feature like others
[08:34:18] sech1: is it easy for you to come to Hong Kong? (visa-wise)
[08:34:20] or difficult?
[08:34:33] or are you there sometimes?
[08:34:41] It's kind of far away
[08:35:13] we are looking forward to more RandomX docs. that's the first step.
[08:35:31] I want to avoid that we have some meme "Linzhi says they can accelerate XYZ by factor x" .... "ha ha ha"
[08:35:37] right? we don't want that :)
[08:35:39] doc is almost finished
[08:35:40] What docs do you need? It's described pretty good
[08:35:41] so I better say nothing now
[08:35:50] we focus on our Ethash chip
[08:36:05] then based on that, we are happy to walk interested people through the design and what else it can do
[08:36:22] that's a better approach from my view than making claims that are laughed away (rightfully so, because no silicon...)
[08:36:37] ethash ASIC is basically a glorified memory controller
[08:36:39] sech1: tevador said something more is coming (he just did it again)
[08:37:03] yes, some parts of RandomX are not described well
[08:37:10] like dataset access logic
[08:37:37] RandomX looks like progpow for CPU
[08:37:54] yes
[08:38:03] it is designed to reflect CPU
[08:38:34] so any ASIC for it = CPU in essence
[08:39:04] of course there are still some things in regular CPU that can be thrown away for RandomX
[08:40:20] uncore parts are not used, but those will use very little power
[08:40:37] except for memory controller
[08:41:09] I'm just surprised sometimes, ok? let me ask: have you designed or taped out an asic before? isn't it risky to make assumptions about things that are largely unknown?
[08:41:23] I would worry
[08:41:31] that I get something wrong...
[08:41:44] but I also worry like crazy that CNv4 will blow up, where you guys seem to be relaxed
[08:42:06] I didn't want to bring up anything RandomX because CNv4 is such a nailbiter... :)
[08:42:15] how do you guys know you don't have asics in a week or two?
[08:42:38] we don't have experience with ASIC design, but RandomX is simply designed to exactly fit CPU capabilities, which is the best you can do anyways
[08:43:09] similar as ProgPoW did with GPUs
[08:43:14] some people say they want to do asic-resistance only until the vast majority of coins has been issued
[08:43:21] that's at least reasonable
[08:43:43] yeah but progpow totally will not work as advertised :)
[08:44:08] yeah, I've seen that comment about progpow a few times already
[08:44:11] which is no surprise if you know it's just a random sales story to sell a few more GPUs
[08:44:13] RandomX is not permanent, we are expecting to switch to ASIC friendly in a few years if possible
[08:44:18] yes
[08:44:21] that makes sense
[08:44:40] linzhi-sonia: how so? will it break or will it be asic-able with decent performance gains?
[08:44:41] are you happy with CNv4 so far?
[08:45:10] ah, long story. progpow is a masterpiece of deception, let's not get into it here.
[08:45:21] if you know chip marketing it makes more sense
[08:45:24] linzhi-sonia: So far? lol! a bit early to tell, don't you think?
[08:45:35] the diff is coming down
[08:45:41] first few hours looked scary
[08:45:43] I remain skeptical: I only see ASICs being reasonable if they are already as ubiquitous as smartphones
[08:45:46] yes, so far so good
[08:46:01] we kbew the diff would not come down ubtil affter block 75
[08:46:10] yes
[08:46:22] but first few hours it looks like only 5% hashrate left
[08:46:27] looked
[08:46:29] now it's better
[08:46:51] the next worry is: when will "unexplainable" hashrate come back?
[08:47:00] you hope 2-3 months? more?
[08:47:05] so give it another couple of days. will probably overshoot to the downside, and then rise a bit as miners get updated and return
[08:47:22] 3 months minimum turnaround, yes
[08:47:28] nah
[08:47:36] don't underestimate asicmakers :)
[08:47:54] you guys don't get #1 priority on chip fabs
[08:47:56] 3 months = 90 days. do you know what is happening in those 90 days exactly? I'm pretty sure you don't. same thing as before.
[08:48:13] we don't do any secret chips btw
[08:48:21] 3 months assumes they had a complete design ready to go, and added the last minute change in 1 day
[08:48:24] do you know who is behind the hashrate that is now bricked?
[08:48:27] innosilicon?
[08:48:34] hyc: no no, and no. :)
[08:48:44] hyc: have you designed or taped out a chip before?
[08:48:51] yes, many years ago
[08:49:10] then you should know that 90 days is not a fixed number
[08:49:35] sure, but like I said, other makers have greater demand
[08:49:35] especially not if you can prepare, if you just have to modify something, or you have more programmability in the chip than some people assume
[08:50:07] we are chipmakers, we would never dare to do what you guys are doing with CNv4 :) but maybe that just means you are cooler!
[08:50:07] and yes, programmability makes some aspect of turnaround easier
[08:50:10] all fine
[08:50:10] I hope it works!
[08:50:28] do you know who is behind the hashrate that is now bricked?
[08:50:29] inno?
[08:50:41] we suspect so, but have no evidence
[08:50:44] maybe we can try to find them, but we cannot spend too much time on this
[08:50:53] it's probably not so much of a secret
[08:51:01] why should it be, right?
[08:51:10] devs want this cat-and-mouse game? devs get it...
[08:51:35] there was one leak saying it's innosilicon
[08:51:36] so you think 3 months, ok
[08:51:43] inno is cool
[08:51:46] good team
[08:51:49] IP design house
[08:51:54] in Wuhan
[08:52:06] they send their people to conferences with fake biz cards :)
[08:52:19] pretending to be other companies?
[08:52:26] sure
[08:52:28] ha ha
[08:52:39] so when we see them, we look at whatever card they carry and laugh :)
[08:52:52] they are perfectly suited for secret mining games
[08:52:59] they made at most $6 million in 2 months of mining, so I wonder if it was worth it
[08:53:10] yeah. no way to know
[08:53:15] but it's good that you calculate!
[08:53:24] this is all about cost/benefit
[08:53:25] then you also understand - imagine the value of XMR goes up 5x, 10x
[08:53:34] that whole "asic resistance" thing will come down like a house of cards
[08:53:41] I would imagine they sell immediately
[08:53:53] the investor may fully understand the risk
[08:53:57] the buyer
[08:54:13] it's not healthy, but that's another discussion
[08:54:23] so mid-June
[08:54:27] let's see
[08:54:49] I would be susprised if CNv4 ASICs show up at all
[08:54:56] surprised*
[08:54:56] why?
[08:55:05] is only an economic question
[08:55:12] yeah should be interesting. FPGAs will be near their limits as well
[08:55:16] unless XMR goes up a lot
[08:55:19] no, not *only*. it's also a technology question
[08:55:44] you believe CNv4 is "asic resistant"? which feature?
[08:55:53] it's not
[08:55:59] cnv4 = Rabdomx ?
[08:56:03] no
[08:56:07] cnv4=cryptinight/r
[08:56:11] ah
[08:56:18] CNv4 is the one we have now, I think
[08:56:21] since yesterday
[08:56:30] it's plenty enough resistant for current XMR price
[08:56:45] that may be, yes!
[08:56:55] I look at daily payouts. XMR = ca. 100k USD / day
[08:57:03] it can hold until October, but it's not asic resistant
[08:57:23] well, last 24h only 22,442 USD :)
[08:57:32] I think 80 h/s per watt ASICs are possible for CNv4
[08:57:38] linzhi-sonia where do you produce your chips? TSMC?
[08:57:44] I'm cruious how you would expect to build a randomX ASIC that outperforms ARM cores for efficiency, or Intel cores for raw speed
[08:57:48] curious
[08:58:01] yes, tsmc
[08:58:21] Our team did the world's first bitcoin asic, Avalon
[08:58:25] and upcoming 2nd gen Ryzens (64-core EPYC) will be a blast at RandomX
[08:58:28] designed and manufactured
[08:58:53] still being marketed?
[08:59:03] linzhi-sonia: do you understand what xmr wants to achieve, community-wise?
[08:59:14] Avalon? as part of Canaan Creative, yes I think so.
[08:59:25] there's not much interesting oing on in SHA256
[08:59:29] Inge-: I would think so, but please speak
[08:59:32] hyc: yes
[09:00:28] linzhi-sonia: i am curious to hear your thoughts. I am fairly new to this space myself...
[09:00:51] oh
[09:00:56] we are grandpas, and grandmas
[09:01:36] yet I have no problem understanding why ASICS are currently reviled.
[09:01:48] xmr's main differentiators to, let's say btc, are anonymity and fungibility
[09:01:58] I find the client terribly slow btw
[09:02:21] and I think the asic-forking since last may is wrong, doesn't create value and doesn't help with the project objectives
[09:02:25] which "the client" ?
[09:02:52] Monero GUI client maybe
[09:03:12] MacOS, yes
[09:03:28] What exactly is slow?
[09:03:30] linzhi-sonia: I run my own node, and use the CLI and Monerujo. Have not had issues.
[09:03:49] staying in sync
[09:03:49] linzhi-sonia: decentralization is also a key principle
[09:03:56] one that Bitcoin has failed to maintain
[09:04:39] hmm
[09:05:00] looks fairly decentralized to me. decentralization is the result of 3 goals imo: resilient, trustless, permissionless
[09:05:28] don't ask a hardware maker about physical decentralization. that's too ideological. we focus on logical decentralization.
[09:06:11] physical decentralization is important. with bulk of bitnoin mining centered on Chinese hydroelectric dams
[09:06:19] have you thought about including block data in the PoW?
[09:06:41] yes, of course.
[09:07:39] is that already in an algo?
[09:08:10] hyc: about "centered on chinese hydro" - what is your source? the best paper I know is this: https://coinshares.co.uk/wp-content/uploads/2018/11/Mining-Whitepaper-Final.pdf
[09:09:01] linzhi-sonia: do you mine on your ASICs before you sell them?
[09:09:13] besides testing of course
[09:09:45] that paper puts Chinese btc miners at 60% max
[09:10:05] tevador: I think everybody learned that that is not healthy long-term!
[09:10:16] because it gives the chipmaker a cost advantage over its own customers
[09:10:33] and cost advantage leads to centralization (physical and logical)
[09:10:51] you guys should know who finances progpow and why :)
[09:11:05] but let's not get into this, ha ha. want to keep the channel civilized. right OhGodAGirl ? :)
[09:11:34] tevador: so the answer is no! 100% and definitely no
[09:11:54] that "self-mining" disease was one of the problems we have now with asics, and their bad reputation (rightfully so)
[09:13:08] I plan to write a nice short 2-page paper or so on our chip design process. maybe it's interesting to some people here.
[09:13:15] basically the 5 steps I mentioned before, from math to physical
[09:13:32] linzhi-sonia: the paper you linked puts 48% of bitcoin mining in Sichuan. the total in China is much more than 60%
[09:13:38] need to run it by a few people to fix bugs, will post it here when published
[09:14:06] hyc: ok! I am just sharing the "best" document I know today. it definitely may be wrong and there may be a better one now.
[09:14:18] hyc: if you see some reports, please share
[09:14:51] hey I am really curious about this: where is a PoW algo that puts block data into the PoW?
[09:15:02] the previous paper I read is from here http://hackingdistributed.com/2018/01/15/decentralization-bitcoin-ethereum/
[09:15:38] hyc: you said that already exists? (block data in PoW)
[09:15:45] it would make verification harder
[09:15:49] linzhi-sonia: https://the-eye.eu/public/Books/campdivision.com/PDF/Computers%20General/Privacy/bitcoin/meh/hashimoto.pdf
[09:15:51] but for chips it would be interesting
[09:15:52] we discussed the possibility about a year ago https://www.reddit.com/Monero/comments/8bshrx/what_we_need_to_know_about_proof_of_work_pow/
[09:16:05] oh good links! thanks! need to read...
[09:16:06] I think that paper by dryja was original
[09:17:53] since we have a nice flow - second question I'm very curious about: has anyone thought about in-protocol rewards for other functions?
[09:18:55] we've discussed micropayments for wallets to use remote nodes
[09:18:55] you know there is a lot of work in other coins about STARK provers, zero-knowledge, etc. many of those things very compute intense, or need to be outsourced to a service (zether). For chipmakers, in-protocol rewards create an economic incentive to accelerate those things.
[09:19:50] whenever there is an in-protocol reward, you may get the power of ASICs doing something you actually want to happen
[09:19:52] it would be nice if there was some economic reward for running a fullnode, but no one has come up with much more than that afaik
[09:19:54] instead of fighting them off
[09:20:29] you need to use asics, not fight them. that's an obvious thing to say for an asicmaker...
[09:20:41] in-protocol rewards can be very powerful
[09:20:50] like I said before - unless the ASICs are so useful they're embedded in every smartphone, I dont see them being a positive for decentralization
[09:21:17] if they're a separate product, the average consumer is not going to buy them
[09:21:20] now I was talking about speedup of verifying, signing, proving, etc.
[09:21:23] they won't even know what they are
[09:22:07] if anybody wants to talk about or design in-protocol rewards, please come talk to us
[09:22:08] the average consumer also doesn't use general purpose hardware to secure blockchains either
[09:22:14] not just for PoW, in fact *NOT* for PoW
[09:22:32] it requires sw/hw co-design
[09:23:10] we are in long-term discussions/collaboration over this with Ethereum, Bitcoin Cash. just talk right now.
[09:23:16] this was recently published though suggesting more uptake though I guess https://btcmanager.com/college-students-are-the-second-biggest-miners-of-cryptocurrency/
[09:23:29] I find it pretty hard to believe their numbers
[09:24:03] well
[09:24:09] sorry, original article: https://www.pcmag.com/news/366952/college-kids-are-using-campus-electricity-to-mine-crypto
[09:24:11] just talk, no? rumors
[09:24:18] college students are already more educated than the average consumer
[09:24:29] we are not seeing many such customers anymore
[09:24:30] it's data from cisco monitoring network traffic
[09:24:33] and they're always looking for free money
[09:24:48] of course anyone with "free" electricity is inclined to do it
[09:24:57] but look at the rates, cannot make much money
[09:26:06] Ethereum is a bloated collection of bugs wrapped in a UI. I suppose they need all the help they can get
[09:26:29] Bitcoin Cash ... just another get rich quick scheme
[09:26:38] hmm :)
[09:26:51] I'll give it back to you, ok? ha ha. arrogance comes before the fall...
[09:27:17] maye we should have a little fun with CNv4 mining :)
[09:27:25] ;)
[09:27:38] come on. anyone who has watched their track record... $75M lost in ETH at DAO hack
[09:27:50] every smart contract that comes along is just waiting for another hack
[09:27:58] I just wanted to throw out the "in-protocol reward" thing, maybe someone sees the idea and wants to cowork. maybe not. maybe it's a stupid idea.
[09:29:18] linzhi-sonia: any thoughts on CN-GPU?
[09:29:55] CN-GPU has one positive aspect - it wastes chip area to implement all 18 hash algorithms
[09:30:19] you will always hear roughly the same feedback from me:
[09:30:52] "This algorithm very different, it heavy use floating point operations to hurt FPGAs and general purpose CPUs"
[09:30:56] the problem is, if it's profitable for people to buy ASIC miners and mine, it's always more profitable for the manufacturer to not sell and mine themselves
[09:31:02] "hurt"
[09:31:07] what is the point of this?
[09:31:15] it totally doesn't work
[09:31:24] you are hurting noone, just demonstrating lack of ability to think
[09:31:41] what is better: algo designed for chip, or chip designed for algo?
[09:31:43] fireice does it on daily basis, CN-GPU is a joke
[09:31:53] tevador: that's not really true, especially in a market with such large price fluctuations as cryptocurrency
[09:32:12] it's far less risky to sell miners than mine with them and pray that price doesn't crash for next six months
[09:32:14] I think it's great that crypto has a nice group of asicmakers now, hw & sw will cowork well
[09:32:36] jwinterm yes, that's why they premine them and sell after
[09:32:41] PoW is about being thermodynamically and cryptographically provable
[09:32:45] premining with them is taking on that risk
[09:32:49] not "fork when we think there are asics"
[09:32:51] business is about risk minimization
[09:32:54] that's just fear-driven
[09:33:05] Inge-: that's roughly the feedback
[09:33:24] I'm not saying it hasn't happened, but I think it's not so simple as saying "it always happens"
[09:34:00] jwinterm: it has certainly happened on BTC. and also on XMR.
[09:34:19] ironically, please think about it: these kinds of algos indeed prove the limits of the chips they were designed for. but they don't prove that you cannot implement the same algo differently! cannot!
[09:34:26] Risk minimization is not starting a business at all.
[09:34:34] proof-of-gpu-limit. proof-of-cpu-limit.
[09:34:37] imagine you have a money printing machine, would you sell it?
[09:34:39] proves nothing for an ASIC :)
[09:35:05] linzhi-sonia: thanks. I dont think anyone believes you can't make a more efficient cn-gpu asic than a gpu - but that it would not be orders of magnitude faster...
[09:35:24] ok
[09:35:44] like I say. these algos are, that's really ironic, designed to prove the limitatios of a particular chip in mind of the designer
[09:35:50] exactly the wrong way round :)
[09:36:16] like the cache size in RandomX :)
[09:36:18] beautiful
[09:36:29] someone looked at GPU designs
[09:37:31] linzhi-sonia can you elaborate? Cache size in RandomX was selected to fit CPU cache
[09:37:52] yes
[09:38:03] too large for GPU
[09:38:11] as I said, we are designing the algorithm to exactly fit CPU capabilities, I do not claim an ASIC cannot be more efficient
[09:38:16] ok!
[09:38:29] when will you do the audit?
[09:38:35] will the results be published in a document or so?
[09:38:37] I claim that single-chip ASIC is not viable, though
[09:39:06] you guys are brave, noone disputes that. 3 anti-asic hardforks now!
[09:39:18] 4th one coming
[09:39:31] 3 forks were done not only for this
[09:39:38] they had scheduled updates in the first place
[09:48:10] Monero is the #1 anti-asic fighter
[09:48:25] Monero is #1 for a lot of reasons ;)
[09:48:40] It's the coin with the most hycs.
[09:48:55] mooooo
[09:59:06] sneaky integer overflow, bug squished
[10:38:00] p0nziph0ne ([email protected]/vpn/privateinternetaccess/p0nziph0ne) has joined #monero-pow
[11:10:53] The convo here is wild
[11:12:29] it's like geo-politics at the intersection of software and hardware manufacturing for thermoeconomic value.
[11:13:05] ..and on a Sunday.
[11:15:43] midipoet: hw and sw should work together and stop silly games to devalue each other. to outsiders this is totally not attractive.
[11:16:07] I appreciate the positive energy here to try to listen, learn, understand.
[11:16:10] that's a start
[11:16:48] <-- p0nziph0ne ([email protected]/vpn/privateinternetaccess/p0nziph0ne) has quit (Quit: Leaving)
[11:16:54] we won't do silly mining against xmr "community" wishes, but not because we couldn'd do it, but because it's the wrong direction in the long run, for both sides
[11:18:57] linzhi-sonia: I agree to some extent. Though, in reality, there will always be divergence between social worlds. Not every body has the same vision of the future. Reaching societal consensus on reality tomorrow is not always easy
[11:20:25] absolutely. especially at a time when there is so much profit to be made from divisiveness.
[11:20:37] someone will want to make that profit, for sure
[11:24:32] Yes. Money distorts.
[11:24:47] Or wealth...one of the two
[11:26:35] Too much physical money will distort rays of light passing close to it indeed.
submitted by jwinterm to Monero [link] [comments]

A 14-year-old's experience with Bitcoin

First-time poster here, don’t bully me, apologies for the potentially atrocious formatting :) TL;DR at the end
So in the wake of Bitcoin’s explosive rise in value and media attention, I’ve been encouraged by others to share my experience over the past few years as a miner. Here's my story (it's kinda long, you've been warned)

Humble Beginnings

It all started almost three years ago in the beginning of 2015 when Bitcoin flew under my radar. Looking into it, I admittedly wasn’t drawn in because of the decentralisation or the anonymous payments, I was hooked on the idea that anyone could get their hands on some just by running a program and leaving it to do its own thing. I know, how shallow of me. But the idea of making even a bit of money without ‘any work’ was convincing enough for 11-year-old me to do more digging into the matter.
To my disappointment, I soon found out that the era of mining Bitcoins with a PC’s CPU or GPU was long obsolete and instead it was all ASICs at that point.
So that summer, for my twelfth birthday, I got a little ASIC machine for €60, an Antminer U3. This little thing took up less space than a graphics card but could mine at 60 GH/s. Because, at the time, I didn’t have a controller device that could be kept up and running all day long so it could run the program that mined Bitcoin using the U3, I went ahead and got a Raspberry Pi. After setting up the Pi and installing all the necessary stuff (took an awfully long time), I connected it to AntPool and plugged the U3 in. Two days past and the mining pool sent the first Bitcoin I ever received to my wallet (I was using Blockchain.info). It was just 30 cents worth of BTC but I felt a bit of a rush because I was earning a bit of money through this completely new thing and the idea of that was thrilling.
Let’s back up for a second. I just used the term ‘earning’ as if I was profiting, and naive me 2 years ago was no different. In reality, I was at first oblivious to the fact that I was most likely LOSING money overall because of how much energy that little sucker was taking in. But, I was comforted thinking that using that machine was just a practical way of learning about this modern currency and that the loss of several cents’ worth of energy was acceptable in the name of education and learning.
Fast forward ten months to the wonderful summer of 2016. I had recently turned 13 and the Antminer U3 had been running on and off throughout. Various pauses and breaks in mining would be observed, as I had to manually get everything up and running after frequent breaks in the Internet connection. You’d expect my newly-turned-teenage brain to lose interest in Bitcoin as it does with many other gimmicks, but – even surprising myself – I miraculously didn’t. Good thing I maintained interest thinking about it now, not so good at the time for my parents. Why do I say this? I felt like it was time to get a little upgrade in my hardware.

Getting an upgrade

Days passed with me comparing every ASIC miner I could at that price point. It was then I set my eyes upon the Antminer S7 (same folks who did my U3, nice). I had put it up against a plethora of other miners and I figured the S7 was my best bet; the thing costs only about 10 times that of my U3 but could run at 4.73 TH/s, almost 80 times as powerful. The only problem being its power consumption was at 1300 watts, which would put a massive dent in the electricity bill and eliminate any profit I would make. Fortunately, I had a secret weapon up my sleeve – or rather my mum did. She had rented out an office outside our apartment where she would keep files and paperwork. The office’s electricity bill was a flat rate as far as I’m aware and it ended up being my saving grace because it virtually got rid of the “oh no I’m actually going to be losing money because of how much electricity I’m eating up” factor, making this whole hardware upgrade viable.
After convincing my parents, they finally agreed to shell out the requested amount, with the initial investment being paid back with time. I went to a local Bitcoin vendor and purchased 1 BTC for about $665 in cash (sigh yes, I know. $665 dollars). Shortly after, I used about 0.9 BTC to purchase the Antminer S7 and a 1600W power supply for a grand total of $600. The products would be made and shipped from China so I was definitely in for a wait.
A month passes and the package arrives at last. I connected all the wires from the power supply into the S7 and – with great anticipation – I plugged it into the wall to start its first ever run. And what do you know? An extremely loud and high-pitched whirring sound blasted out from the fans on both the power supply as well as the S7. After killing the thing, I questioned my choices. I couldn’t dare put that thing anywhere near my mum’s office in the event it drive everyone in the building absolutely nuts. I was at a loss. However, I soon recovered from my temporarily debilitated state and got working on a solution.
The first idea that came to my mind: change the fans. The stocks fans were by Evercool and spun at around 3000 RPM. The power supply used a small, robust fan that looked like a cube that must’ve spun at extremely high speeds judging by how high the sound it produced was. I got my parents to give me some more funding so I could acquire the replacement fans and I did. Bust. After installation and testing, none of the fans would work. I managed to configure the S7 to connect to my Antpool account and the machine would manage mining for several minutes running at peak performance but ultimately be automatically cut off because of how hot the machine was getting (I’m talking about 80 degrees Celsius kinda hot in that thing). The fans got refunded and I was back to the drawing board.
After combing through some forum posts and videos, I came across this video and a forum post in which people have their mining rigs placed inside a ventilated, muffled cabinet. Undertaking a project like this would be time-consuming and risky but I had no better ideas so I decided to go through with the idea anyway.
Firstly, I sought out a cabinet with suitable dimensions. I managed to get just what I needed at a second-hand IKEA shop. Great. Secondly, I went ahead and acquired some sound-absorbing acoustic foam from a local provider. Fantastic. Finally I had to get a ventilation system going within the cabinet, otherwise, all the hot air would roast the machine alive in there in a bloody mess. With the help of my dad, we found a pair cabinet fans on the Internet that were close to silent but could circulate the air well enough.
Eventually, all the materials came and, with the help of my parents, put everything together. The process took quite long time and we had a couple hiccups along the way, but we got it done and it came out pretty nice.
The moment of truth came and, to my relief, it ran so much quieter than without the cabinet. It was nowhere near silent but it reduced the noise a great deal. Soon after, I got the thing into the office and set everything up from there. Unfortunately, I was forced to underclock it because you could still hear the machine’s whining from outside the thin office door. Gunning the hashrate down about 25% to 3.7TH/s, I could lower the fan speed without risking the machine burning up. Sure, I wasn’t getting the full potential of the machine but I didn’t complain because electricity was not an issue there and it was still a whole lot better than my U3. With it up and running, I could leave it there, periodically checking to see if it was mining on Antpool.

The aftermath

In the months that followed, I was getting a solid $2.5 worth of BTC on daily basis. Half a year later, May of 2017, I had accumulated a satisfactory $600. I thought, “At this rate, I’d be able to pay my parents’ investment back in a few months” (the total investment came close to $900). Bitcoin had risen to over $1500 so I was already over the moon at that point because of how well everything was going. Little did I know…
I hit 0.5 BTC midway through September this year. The price of BTC had dropped after a sudden rise to $5000, but I couldn’t have asked for more. Although I possessed only half the amount of BTC I paid for the machine, its value was over twice that of the initial investment. I thought BTC would level off at around $4000 but nope.
In the month of October, the price skyrocketed. Since September, I had only mined 0.017 BTC but the value was already over $3000. It was just a matter of selling it, but I decided to hodl. Good thing I did.
As of November 5, I have approximately 0.52 BTC mined in total from my S7, valued at $4000. If I were to sell it right now, I’d have a profit of over $3100. And as for my miner, it’s churning out 0.0006 BTC daily, sounds like nothing but it’s still the equivalent of $5 today and I couldn’t be happier, at least with the miner and Bitcoin.
You remember that $665 for 1 BTC that I mentioned earlier? In hindsight, it would’ve been such a better idea to just keep that one Bitcoin and not do anything with it until today (in the interest of making much more money), as I’d theoretically have upwards of $7000. The idea of that still haunts me sometimes if I dwell on it too long but knowing that I’m in possession of an already hefty amount, the pain of it had numbed slightly. It’s not all doom and gloom for me from the exponential increase in Bitcoin’s value, however. Those first $0.3 payments from my humble little U3 all those years ago now are now the equivalent of over $6 today!
Bitcoin and everything it encompasses has been and still is a journey of discovery and an adventure. Looking back, starting with a modest €60 Antminer U3 to having a sum of Bitcoin equivalent to two extremely high-end gaming rigs (first thing I could think of as a comparison, sorry) has been something I can’t really describe. Through the course of the past few years, I’ve learned more about technology, I’ve unexpectedly gotten insight into economics and business and – of course – I’ve made a lot of money (if I decide to stop hodling that is).
Also, props to my parents for keeping an open mind throughout, I know some parents would be horrified at their kids being involved in something that has been used in some less-than-savoury ways and it's great knowing mine have been supportive all the way.
TL;DR got into Bitcoin mining 3 years ago at age 11 with an Antminer U3 that ran at 60 GH/s, got an Antminer S7 (4.73TH/s) and built a sound-muffling, ventilated cabinet for it. Am sat here today with $3000 profit if I decide to sell right now.
submitted by xx_riptide_xx to Bitcoin [link] [comments]

Searching for the Unicorn Cryptocurrency

Searching for the Unicorn Cryptocurrency
For someone first starting out as a cryptocurrency investor, finding a trustworthy manual for screening a cryptocurrency’s merits is nonexistent as we are still in the early, Wild West days of the cryptocurrency market. One would need to become deeply familiar with the inner workings of blockchain to be able to perform the bare minimum due diligence.
One might believe, over time, that finding the perfect cryptocurrency may be nothing short of futile. If a cryptocurrency purports infinite scalability, then it is probably either lightweight with limited features or it is highly centralized among a limited number of nodes that perform consensus services especially Proof of Stake or Delegated Proof of Stake. Similarly, a cryptocurrency that purports comprehensive privacy may have technical obstacles to overcome if it aims to expand its applications such as in smart contracts. The bottom line is that it is extremely difficult for a cryptocurrency to have all important features jam-packed into itself.
The cryptocurrency space is stuck in the era of the “dial-up internet” in a manner of speaking. Currently blockchain can’t scale – not without certain tradeoffs – and it hasn’t fully resolved certain intractable issues such as user-unfriendly long addresses and how the blockchain size is forever increasing to name two.
In other words, we haven’t found the ultimate cryptocurrency. That is, we haven’t found the mystical unicorn cryptocurrency that ushers the era of decentralization while eschewing all the limitations of traditional blockchain systems.
“But wait – what about Ethereum once it implements sharding?”
“Wouldn’t IOTA be able to scale infinitely with smart contracts through its Qubic offering?”
“Isn’t Dash capable of having privacy, smart contracts, and instantaneous transactions?”
Those thoughts and comments may come from cryptocurrency investors who have done their research. It is natural for the informed investors to invest in projects that are believed to bring cutting edge technological transformation to blockchain. Sooner or later, the sinking realization will hit that any variation of the current blockchain technology will always likely have certain limitations.
Let us pretend that there indeed exists a unicorn cryptocurrency somewhere that may or may not be here yet. What would it look like, exactly? Let us set the 5 criteria of the unicorn cryptocurrency:
Unicorn Criteria
(1) Perfectly solves the blockchain trilemma:
o Infinite scalability
o Full security
o Full decentralization
(2) Zero or minimal transaction fee
(3) Full privacy
(4) Full smart contract capabilities
(5) Fair distribution and fair governance
For each of the above 5 criteria, there would not be any middle ground. For example, a cryptocurrency with just an in-protocol mixer would not be considered as having full privacy. As another example, an Initial Coin Offering (ICO) may possibly violate criterion (5) since with an ICO the distribution and governance are often heavily favored towards an oligarchy – this in turn would defy the spirit of decentralization that Bitcoin was found on.
There is no cryptocurrency currently that fits the above profile of the unicorn cryptocurrency. Let us examine an arbitrary list of highly hyped cryptocurrencies that meet the above list at least partially. The following list is by no means comprehensive but may be a sufficient sampling of various blockchain implementations:
Bitcoin (BTC)
Bitcoin is the very first and the best known cryptocurrency that started it all. While Bitcoin is generally considered extremely secure, it suffers from mining centralization to a degree. Bitcoin is not anonymous, lacks smart contracts, and most worrisomely, can only do about 7 transactions per seconds (TPS). Bitcoin is not the unicorn notwithstanding all the Bitcoin maximalists.
Ethereum (ETH)
Ethereum is widely considered the gold standard of smart contracts aside from its scalability problem. Sharding as part of Casper’s release is generally considered to be the solution to Ethereum’s scalability problem.
The goal of sharding is to split up validating responsibilities among various groups or shards. Ethereum’s sharding comes down to duplicating the existing blockchain architecture and sharing a token. This does not solve the core issue and simply kicks the can further down the road. After all, full nodes still need to exist one way or another.
Ethereum’s blockchain size problem is also an issue as will be explained more later in this article.
As a result, Ethereum is not the unicorn due to its incomplete approach to scalability and, to a degree, security.
Dash
Dash’s masternodes are widely considered to be centralized due to their high funding requirements, and there are accounts of a pre-mine in the beginning. Dash is not the unicorn due to its questionable decentralization.
Nano
Nano boasts rightfully for its instant, free transactions. But it lacks smart contracts and privacy, and it may be exposed to well orchestrated DDOS attacks. Therefore, it goes without saying that Nano is not the unicorn.
EOS
While EOS claims to execute millions of transactions per seconds, a quick glance reveals centralized parameters with 21 nodes and a questionable governance system. Therefore, EOS fails to achieve the unicorn status.
Monero (XMR)
One of the best known and respected privacy coins, Monero lacks smart contracts and may fall short of infinite scalability due to CryptoNote’s design. The unicorn rank is out of Monero’s reach.
IOTA
IOTA’s scalability is based on the number of transactions the network processes, and so its supposedly infinite scalability would fluctuate and is subject to the whims of the underlying transactions. While IOTA’s scalability approach is innovative and may work in the long term, it should be reminded that the unicorn cryptocurrency has no middle ground. The unicorn cryptocurrency would be expected to scale infinitely on a consistent basis from the beginning.
In addition, IOTA’s Masked Authenticated Messaging (MAM) feature does not bring privacy to the masses in a highly convenient manner. Consequently, the unicorn is not found with IOTA.

PascalCoin as a Candidate for the Unicorn Cryptocurrency
Please allow me to present a candidate for the cryptocurrency unicorn: PascalCoin.
According to the website, PascalCoin claims the following:
“PascalCoin is an instant, zero-fee, infinitely scalable, and decentralized cryptocurrency with advanced privacy and smart contract capabilities. Enabled by the SafeBox technology to become the world’s first blockchain independent of historical operations, PascalCoin possesses unlimited potential.”
The above summary is a mouthful to be sure, but let’s take a deep dive on how PascalCoin innovates with the SafeBox and more. Before we do this, I encourage you to first become acquainted with PascalCoin by watching the following video introduction:
https://www.youtube.com/watch?time_continue=4&v=F25UU-0W9Dk
The rest of this section will be split into 10 parts in order to illustrate most of the notable features of PascalCoin. Naturally, let’s start off with the SafeBox.
Part #1: The SafeBox
Unlike traditional UTXO-based cryptocurrencies in which the blockchain records the specifics of each transaction (address, sender address, amount of funds transferred, etc.), the blockchain in PascalCoin is only used to mutate the SafeBox. The SafeBox is a separate but equivalent cryptographic data structure that snapshots account balances. PascalCoin’s blockchain is comparable to a machine that feeds the most important data – namely, the state of an account – into the SafeBox. Any node can still independently compute and verify the cumulative Proof-of-Work required to construct the SafeBox.
The PascalCoin whitepaper elegantly highlights the unique historical independence that the SafeBox possesses:
“While there are approaches that cryptocurrencies could use such as pruning, warp-sync, "finality checkpoints", UTXO-snapshotting, etc, there is a fundamental difference with PascalCoin. Their new nodes can only prove they are on most-work-chain using the infinite history whereas in PascalCoin, new nodes can prove they are on the most-work chain without the infinite history.”
Some cryptocurrency old-timers might instinctively balk at the idea of full nodes eschewing the entire history for security, but such a reaction would showcase a lack of understanding on what the SafeBox really does.
A concrete example would go a long way to best illustrate what the SafeBox does. Let’s say I input the following operations in my calculator:
5 * 5 – 10 / 2 + 5
It does not take a genius to calculate the answer, 25. Now, the expression “5 \ 5 – 10 / 2 + 5”* would be forever imbued on a traditional blockchain’s history. But the SafeBox begs to differ. It says that the expression “5 \ 5 – 10 / 2 + 5”* should instead be simply “25” so as preserve simplicity, time, and space. In other words, the SafeBox simply preserves the account balance.
But some might still be unsatisfied and claim that if one cannot trace the series of operations (transactions) that lead to the final number (balance) of 25, the blockchain is inherently insecure.
Here are four important security aspects of the SafeBox that some people fail to realize:
(1) SafeBox Follows the Longest Chain of Proof-of-Work
The SafeBox mutates itself per 100 blocks. Each new SafeBox mutation must reference both to the previous SafeBox mutation and the preceding 100 blocks in order to be valid, and the resultant hash of the new mutated SafeBox must then be referenced by each of the new subsequent blocks, and the process repeats itself forever.
The fact that each new SafeBox mutation must reference to the previous SafeBox mutation is comparable to relying on the entire history. This is because the previous SafeBox mutation encapsulates the result of cumulative entire history except for the 100 blocks which is why each new SafeBox mutation requires both the previous SafeBox mutation and the preceding 100 blocks.
So in a sense, there is a single interconnected chain of inflows and outflows, supported by Byzantine Proof-of-Work consensus, instead of the entire history of transactions.
More concretely, the SafeBox follows the path of the longest chain of Proof-of-Work simply by design, and is thus cryptographically equivalent to the entire history even without tracing specific operations in the past. If the chain is rolled back with a 51% attack, only the attacker’s own account(s) in the SafeBox can be manipulated as is explained in the next part.
(2) A 51% Attack on PascalCoin Functions the Same as Others
A 51% attack on PascalCoin would work in a similar way as with other Proof-of-Work cryptocurrencies. An attacker cannot modify a transaction in the past without affecting the current SafeBox hash which is accepted by all honest nodes.
Someone might claim that if you roll back all the current blocks plus the 100 blocks prior to the SafeBox’s mutation, one could create a forged SafeBox with different balances for all accounts. This would be incorrect as one would be able to manipulate only his or her own account(s) in the SafeBox with a 51% attack – just as is the case with other UTXO cryptocurrencies. The SafeBox stores the balances of all accounts which are in turn irreversibly linked only to their respective owners’ private keys.
(3) One Could Preserve the Entire History of the PascalCoin Blockchain
No blockchain data in PascalCoin is ever deleted even in the presence of the SafeBox. Since the SafeBox is cryptographically equivalent to a full node with the entire history as explained above, PascalCoin full nodes are not expected to contain infinite history. But for whatever reason(s) one may have, one could still keep all the PascalCoin blockchain history as well along with the SafeBox as an option even though it would be redundant.
Without storing the entire history of the PascalCoin blockchain, you can still trace the specific operations of the 100 blocks prior to when the SafeBox absorbs and reflects the net result (a single balance for each account) from those 100 blocks. But if you’re interested in tracing operations over a longer period in the past – as redundant as that may be – you’d have the option to do so by storing the entire history of the PascalCoin blockchain.
(4) The SafeBox is Equivalent to the Entire Blockchain History
Some skeptics may ask this question: “What if the SafeBox is forever lost? How would you be able to verify your accounts?” Asking this question is tantamount to asking to what would happen to Bitcoin if all of its entire history was erased. The result would be chaos, of course, but the SafeBox is still in line with the general security model of a traditional blockchain with respect to black swans.
Now that we know the security of the SafeBox is not compromised, what are the implications of this new blockchain paradigm? A colorful illustration as follows still wouldn’t do justice to the subtle revolution that the SafeBox ushers. The automobiles we see on the street are the cookie-and-butter representation of traditional blockchain systems. The SafeBox, on the other hand, supercharges those traditional cars to become the Transformers from Michael Bay’s films.
The SafeBox is an entirely different blockchain architecture that is impressive in its simplicity and ingenuity. The SafeBox’s design is only the opening act for PascalCoin’s vast nuclear arsenal. If the above was all that PascalCoin offers, it still wouldn’t come close to achieving the unicorn status but luckily, we have just scratched the surface. Please keep on reading on if you want to learn how PascalCoin is going to shatter the cryptocurrency industry into pieces. Buckle down as this is going to be a long read as we explore further about the SafeBox’s implications.
Part #2: 0-Confirmation Transactions
To begin, 0-confirmation transactions are secure in PascalCoin thanks to the SafeBox.
The following paraphrases an explanation of PascalCoin’s 0-confirmations from the whitepaper:
“Since PascalCoin is not a UTXO-based currency but rather a State-based currency thanks to the SafeBox, the security guarantee of 0-confirmation transactions are much stronger than in UTXO-based currencies. For example, in Bitcoin if a merchant accepts a 0-confirmation transaction for a coffee, the buyer can simply roll that transaction back after receiving the coffee but before the transaction is confirmed in a block. The way the buyer does this is by re-spending those UTXOs to himself in a new transaction (with a higher fee) thus invalidating them for the merchant. In PascalCoin, this is virtually impossible since the buyer's transaction to the merchant is simply a delta-operation to debit/credit a quantity from/to accounts respectively. The buyer is unable to erase or pre-empt this two-sided, debit/credit-based transaction from the network’s pending pool until it either enters a block for confirmation or is discarded with respect to both sender and receiver ends. If the buyer tries to double-spend the coffee funds after receiving the coffee but before they clear, the double-spend transaction will not propagate the network since nodes cannot propagate a double-spending transaction thanks to the debit/credit nature of the transaction. A UTXO-based transaction is initially one-sided before confirmation and therefore is more exposed to one-sided malicious schemes of double spending.”
Phew, that explanation was technical but it had to be done. In summary, PascalCoin possesses the only secure 0-confirmation transactions in the cryptocurrency industry, and it goes without saying that this means PascalCoin is extremely fast. In fact, PascalCoin is capable of 72,000 TPS even prior to any additional extensive optimizations down the road. In other words, PascalCoin is as instant as it gets and gives Nano a run for its money.
Part #3: Zero Fee
Let’s circle back to our discussion of PascalCoin’s 0-confirmation capability. Here’s a little fun magical twist to PascalCoin’s 0-confirmation magic: 0-confirmation transactions are zero-fee. As in you don’t pay a single cent in fee for each 0-confirmation! There is just a tiny downside: if you create a second transaction in a 5-minute block window then you’d need to pay a minimal fee. Imagine using Nano but with a significantly stronger anti-DDOS protection for spam! But there shouldn’t be any complaint as this fee would amount to 0.0001 Pascal or $0.00002 based on the current price of a Pascal at the time of this writing.
So, how come the fee for blazingly fast transactions is nonexistent? This is where the magic of the SafeBox arises in three ways:
(1) PascalCoin possesses the secure 0-confirmation feature as discussed above that enables this speed.
(2) There is no fee bidding competition of transaction priority typical in UTXO cryptocurrencies since, once again, PascalCoin operates on secure 0-confirmations.
(3) There is no fee incentive needed to run full nodes on behalf of the network’s security beyond the consensus rewards.
Part #4: Blockchain Size
Let’s expand more on the third point above, using Ethereum as an example. Since Ethereum’s launch in 2015, its full blockchain size is currently around 2 TB, give or take, but let’s just say its blockchain size is 100 GB for now to avoid offending the Ethereum elitists who insist there are different types of full nodes that are lighter. Whoever runs Ethereum’s full nodes would expect storage fees on top of the typical consensus fees as it takes significant resources to shoulder Ethereum’s full blockchain size and in turn secure the network. What if I told you that PascalCoin’s full blockchain size will never exceed few GBs after thousands of years? That is just what the SafeBox enables PascalCoin to do so. It is estimated that by 2072, PascalCoin’s full nodes will only be 6 GB which is low enough not to warrant any fee incentives for hosting full nodes. Remember, the SafeBox is an ultra-light cryptographic data structure that is cryptographically equivalent to a blockchain with the entire transaction history. In other words, the SafeBox is a compact spreadsheet of all account balances that functions as PascalCoin’s full node!
Not only does the SafeBox’s infinitesimal memory size helps to reduce transaction fees by phasing out any storage fees, but it also paves the way for true decentralization. It would be trivial for every PascalCoin user to opt a full node in the form of a wallet. This is extreme decentralization at its finest since the majority of users of other cryptocurrencies ditch full nodes due to their burdensome sizes. It is naïve to believe that storage costs would reduce enough to the point where hosting full nodes are trivial. Take a look at the following chart outlining the trend of storage cost.

* https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
As we can see, storage costs continue to decrease but the descent is slowing down as is the norm with technological improvements. In the meantime, blockchain sizes of other cryptocurrencies are increasing linearly or, in the case of smart contract engines like Ethereum, parabolically. Imagine a cryptocurrency smart contract engine like Ethereum garnering worldwide adoption; how do you think Ethereum’s size would look like in the far future based on the following chart?


https://i.redd.it/k57nimdjmo621.png

Ethereum’s future blockchain size is not looking pretty in terms of sustainable security. Sharding is not a fix for this issue since there still needs to be full nodes but that is a different topic for another time.
It is astonishing that the cryptocurrency community as a whole has passively accepted this forever-expanding-blockchain-size problem as an inescapable fate.
PascalCoin is the only cryptocurrency that has fully escaped the death vortex of forever expanding blockchain size. Its blockchain size wouldn’t exceed 10 GB even after many hundreds of years of worldwide adoption. Ethereum’s blockchain size after hundreds of years of worldwide adoption would make fine comedy.
Part #5: Simple, Short, and Ordinal Addresses
Remember how the SafeBox works by snapshotting all account balances? As it turns out, the account address system is almost as cool as the SafeBox itself.
Imagine yourself in this situation: on a very hot and sunny day, you’re wandering down the street across from your house and ran into a lemonade stand – the old-fashioned kind without any QR code or credit card terminal. The kid across you is selling a lemonade cup for 1 Pascal with a poster outlining the payment address as 5471-55. You flip out your phone and click “Send” with 1 Pascal to the address 5471-55; viola, exactly one second later you’re drinking your lemonade without paying a cent for the transaction fee!
The last thing one wants to do is to figure out how to copy/paste to, say, the following address 1BoatSLRHtKNngkdXEeobR76b53LETtpyT on the spot wouldn’t it? Gone are the obnoxiously long addresses that plague all cryptocurrencies. The days of those unreadable addresses will be long gone – it has to be if blockchain is to innovate itself for the general public. EOS has a similar feature for readable addresses but in a very limited manner in comparison, and nicknames attached to addresses in GUIs don’t count since blockchain-wide compatibility wouldn’t hold.
Not only does PascalCoin has the neat feature of having addresses (called PASAs) that amount to up to 6 or 7 digits, but PascalCoin can also incorporate in-protocol address naming as opposed to GUI address nicknames. Suppose I want to order something from Amazon using Pascal; I simply search the word “Amazon” then the corresponding account number shows up. Pretty neat, right?
The astute reader may gather that PascalCoin’s address system makes it necessary to commoditize addresses, and he/she would be correct. Some view this as a weakness; part #10 later in this segment addresses this incorrect perception.
Part #6: Privacy
As if the above wasn’t enough, here’s another secret that PascalCoin has: it is a full-blown privacy coin. It uses two separate foundations to achieve comprehensive anonymity: in-protocol mixer for transfer amounts and zn-SNARKs for private balances. The former has been implemented and the latter is on the roadmap. Both the 0-confirmation transaction and the negligible transaction fee would make PascalCoin the most scalable privacy coin of any other cryptocurrencies pending the zk-SNARKs implementation.
Part #7: Smart Contracts
Next, PascalCoin will take smart contracts to the next level with a layer-2 overlay consensus system that pioneers sidechains and other smart contract implementations.
In formal terms, this layer-2 architecture will facilitate the transfer of data between PASAs which in turn allows clean enveloping of layer-2 protocols inside layer-1 much in the same way that HTTP lives inside TCP.
To summarize:
· The layer-2 consensus method is separate from the layer-1 Proof-of-Work. This layer-2 consensus method is independent and flexible. A sidechain – based on a single encompassing PASA – could apply Proof-of-Stake (POS), Delegated Proof-of-Stake (DPOS), or Directed Acyclic Graph (DAG) as the consensus system of its choice.
· Such a layer-2 smart contract platform can be written in any languages.
· Layer-2 sidechains will also provide very strong anonymity since funds are all pooled and keys are not used to unlock them.
· This layer-2 architecture is ingenious in which the computation is separate from layer-2 consensus, in effect removing any bottleneck.
· Horizontal scaling exists in this paradigm as there is no interdependence between smart contracts and states are not managed by slow sidechains.
· Speed and scalability are fully independent of PascalCoin.
One would be able to run the entire global financial system on PascalCoin’s infinitely scalable smart contract platform and it would still scale infinitely. In fact, this layer-2 architecture would be exponentially faster than Ethereum even after its sharding is implemented.
All this is the main focus of PascalCoin’s upcoming version 5 in 2019. A whitepaper add-on for this major upgrade will be released in early 2019.
Part #8: RandomHash Algorithm
Surely there must be some tradeoffs to PascalCoin’s impressive capabilities, you might be asking yourself. One might bring up the fact that PascalCoin’s layer-1 is based on Proof-of-Work and is thus susceptible to mining centralization. This would be a fallacy as PascalCoin has pioneered the very first true ASIC, GPU, and dual-mining resistant algorithm known as RandomHash that obliterates anything that is not CPU based and gives all the power back to solo miners.
Here is the official description of RandomHash:
“RandomHash is a high-level cryptographic hash algorithm that combines other well-known hash primitives in a highly serial manner. The distinguishing feature is that calculations for a nonce are dependent on partial calculations of other nonces, selected at random. This allows a serial hasher (CPU) to re-use these partial calculations in subsequent mining saving 50% or more of the work-load. Parallel hashers (GPU) cannot benefit from this optimization since the optimal nonce-set cannot be pre-calculated as it is determined on-the-fly. As a result, parallel hashers (GPU) are required to perform the full workload for every nonce. Also, the algorithm results in 10x memory bloat for a parallel implementation. In addition to its serial nature, it is branch-heavy and recursive making in optimal for CPU-only mining.”
One might be understandably skeptical of any Proof-of-Work algorithm that solves ASIC and GPU centralization once for all because there have been countless proposals being thrown around for various algorithms since the dawn of Bitcoin. Is RandomHash truly the ASIC & GPU killer that it claims to be?
Herman Schoenfeld, the inventor behind RandomHash, described his algorithm in the following:
“RandomHash offers endless ASIC-design breaking surface due to its use of recursion, hash algo selection, memory hardness and random number generation.
For example, changing how round hash selection is made and/or random number generator algo and/or checksum algo and/or their sequencing will totally break an ASIC design. Conceptually if you can significantly change the structure of the output assembly whilst keeping the high-level algorithm as invariant as possible, the ASIC design will necessarily require proportional restructuring. This results from the fact that ASIC designs mirror the ASM of the algorithm rather than the algorithm itself.”
Polyminer1 (pseudonym), one of the members of the PascalCoin core team who developed RHMiner (official software for mining RandomHash), claimed as follows:
“The design of RandomHash is, to my experience, a genuine innovation. I’ve been 30 years in the field. I’ve rarely been surprised by anything. RandomHash was one of my rare surprises. It’s elegant, simple, and achieves resistance in all fronts.”
PascalCoin may have been the first party to achieve the race of what could possibly be described as the “God algorithm” for Proof-of-Work cryptocurrencies. Look no further than one of Monero’s core developers since 2015, Howard Chu. In September 2018, Howard declared that he has found a solution, called RandomJS, to permanently keep ASICs off the network without repetitive algorithm changes. This solution actually closely mirrors RandomHash’s algorithm. Discussing about his algorithm, Howard asserted that “RandomJS is coming at the problem from a direction that nobody else is.”
Link to Howard Chu’s article on RandomJS:
https://www.coindesk.com/one-musicians-creative-solution-to-drive-asics-off-monero
Yet when Herman was asked about Howard’s approach, he responded:
“Yes, looks like it may work although using Javascript was a bit much. They should’ve just used an assembly subset and generated random ASM programs. In a way, RandomHash does this with its repeated use of random mem-transforms during expansion phase.”
In the end, PascalCoin may have successfully implemented the most revolutionary Proof-of-Work algorithm, one that eclipses Howard’s burgeoning vision, to date that almost nobody knows about. To learn more about RandomHash, refer to the following resources:
RandomHash whitepaper:
https://www.pascalcoin.org/storage/whitepapers/RandomHash_Whitepaper.pdf
Technical proposal for RandomHash:
https://github.com/PascalCoin/PascalCoin/blob/mastePIP/PIP-0009.md
Someone might claim that PascalCoin still suffers from mining centralization after RandomHash, and this is somewhat misleading as will be explained in part #10.
Part #9: Fair Distribution and Governance
Not only does PascalCoin rest on superior technology, but it also has its roots in the correct philosophy of decentralized distribution and governance. There was no ICO or pre-mine, and the developer fund exists as a percentage of mining rewards as voted by the community. This developer fund is 100% governed by a decentralized autonomous organization – currently facilitated by the PascalCoin Foundation – that will eventually be transformed into an autonomous smart contract platform. Not only is the developer fund voted upon by the community, but PascalCoin’s development roadmap is also voted upon the community via the Protocol Improvement Proposals (PIPs).
This decentralized governance also serves an important benefit as a powerful deterrent to unseemly fork wars that befall many cryptocurrencies.
Part #10: Common Misconceptions of PascalCoin
“The branding is terrible”
PascalCoin is currently working very hard on its image and is preparing for several branding and marketing initiatives in the short term. For example, two of the core developers of the PascalCoin recently interviewed with the Fox Business Network. A YouTube replay of this interview will be heavily promoted.
Some people object to the name PascalCoin. First, it’s worth noting that PascalCoin is the name of the project while Pascal is the name of the underlying currency. Secondly, Google and YouTube received excessive criticisms back then in the beginning with their name choices. Look at where those companies are nowadays – surely a somewhat similar situation faces PascalCoin until the name’s familiarity percolates into the public.
“The wallet GUI is terrible”
As the team is run by a small yet extremely dedicated developers, multiple priorities can be challenging to juggle. The lack of funding through an ICO or a pre-mine also makes it challenging to accelerate development. The top priority of the core developers is to continue developing full-time on the groundbreaking technology that PascalCoin offers. In the meantime, an updated and user-friendly wallet GUI has been worked upon for some time and will be released in due time. Rome wasn’t built in one day.
“One would need to purchase a PASA in the first place”
This is a complicated topic since PASAs need to be commoditized by the SafeBox’s design, meaning that PASAs cannot be obtained at no charge to prevent systematic abuse. This raises two seemingly valid concerns:
· As a chicken and egg problem, how would one purchase a PASA using Pascal in the first place if one cannot obtain Pascal without a PASA?
· How would the price of PASAs stay low and affordable in the face of significant demand?
With regards to the chicken and egg problem, there are many ways – some finished and some unfinished – to obtain your first PASA as explained on the “Get Started” page on the PascalCoin website:
https://www.pascalcoin.org/get_started
More importantly, however, is the fact that there are few methods that can get your first PASA for free. The team will also release another method soon in which you could obtain your first PASA for free via a single SMS message. This would probably become by far the simplest and the easiest way to obtain your first PASA for free. There will be more new ways to easily obtain your first PASA for free down the road.
What about ensuring the PASA market at large remains inexpensive and affordable following your first (and probably free) PASA acquisition? This would be achieved in two ways:
· Decentralized governance of the PASA economics per the explanation in the FAQ section on the bottom of the PascalCoin website (https://www.pascalcoin.org/)
· Unlimited and free pseudo-PASAs based on layer-2 in the next version release.
“PascalCoin is still centralized after the release of RandomHash”
Did the implementation of RandomHash from version 4 live up to its promise?
The official goals of RandomHash were as follow:
(1) Implement a GPU & ASIC resistant hash algorithm
(2) Eliminate dual mining
The two goals above were achieved by every possible measure.
Yet a mining pool, Nanopool, was able to regain its hash majority after a significant but a temporary dip.
The official conclusion is that, from a probabilistic viewpoint, solo miners are more profitable than pool miners. However, pool mining is enticing for solo miners who 1) have limited hardware as it ensures a steady income instead of highly profitable but probabilistic income via solo mining, and 2) who prefer convenient software and/or GUI.
What is the next step, then? While the barrier of entry for solo miners has successfully been put down, additional work needs to be done. The PascalCoin team and the community are earnestly investigating additional steps to improve mining decentralization with respect to pool mining specifically to add on top of RandomHash’s successful elimination of GPU, ASIC, and dual-mining dominance.
It is likely that the PascalCoin community will promote the following two initiatives in the near future:
(1) Establish a community-driven, nonprofit mining pool with attractive incentives.
(2) Optimize RHMiner, PascalCoin’s official solo mining software, for performance upgrades.
A single pool dominance is likely short lived once more options emerge for individual CPU miners who want to avoid solo mining for whatever reason(s).
Let us use Bitcoin as an example. Bitcoin mining is dominated by ASICs and mining pools but no single pool is – at the time of this writing – even close on obtaining the hash majority. With CPU solo mining being a feasible option in conjunction with ASIC and GPU mining eradication with RandomHash, the future hash rate distribution of PascalCoin would be far more promising than Bitcoin’s hash rate distribution.
PascalCoin is the Unicorn Cryptocurrency
If you’ve read this far, let’s cut straight to the point: PascalCoin IS the unicorn cryptocurrency.
It is worth noting that PascalCoin is still a young cryptocurrency as it was launched at the end of 2016. This means that many features are still work in progress such as zn-SNARKs, smart contracts, and pool decentralization to name few. However, it appears that all of the unicorn criteria are within PascalCoin’s reach once PascalCoin’s technical roadmap is mostly completed.
Based on this expository on PascalCoin’s technology, there is every reason to believe that PascalCoin is the unicorn cryptocurrency. PascalCoin also solves two fundamental blockchain problems beyond the unicorn criteria that were previously considered unsolvable: blockchain size and simple address system. The SafeBox pushes PascalCoin to the forefront of cryptocurrency zeitgeist since it is a superior solution compared to UTXO, Directed Acyclic Graph (DAG), Block Lattice, Tangle, and any other blockchain innovations.


THE UNICORN

Author: Tyler Swob
submitted by Kosass to CryptoCurrency [link] [comments]

Got a 0 on an assignment about Bitcoin for it not being "age appropriate!"

Hello people of Reddit. I'm an 8th grade student of a Cyber School. I am very familiar with Bitcoin. I maintain my parents' 2 KnCMiner Jupiters. I have also traded it at an exchange. I'd say I'm pretty familiar with the coin.
In my English class, about 2 weeks ago, I was told to make a "how-to" document on something I know how to do. So, I made it on Bitcoin mining. I spent a few hours working on it, making sure it was the best thing I had ever worked on. Finally, I submitted it. Then, I checked the grade the next day.
After a document is submitted, it will say "0%" next to it, until it's graded. So, I when I saw this, I thought, "oh well. Still hasn't been graded." But I clicked on it just to make sure it wasn't actually a 0. Well, it was. I was so confused. I wondered if I submitted the wrong document. Now, you can see what the teacher said about the document. She said it was not "age appropriate!" I then got mad. As I read on, she said, for an 8th grade student, I should write about "cleaning my room" or "washing the car." Well, then i got EXTREMELY mad. Something I had worked so hard on, given a 0% because I had not written about something a 3rd grader knows how to do.
Then came yesterday. We had to write a follow-up assignment on the topic we wrote about. So, I headed the document stating the truth that many kids my age mine Bitcoin with their computers, and that many of my friends want to know how to also. I submitted the document and waited. So, went back to check the grade and said "0%." I think you already know what's going to happen next. I checked it and, big surprise, I got a 0. This time, it was a bit different. She said she understands how I "feel" that it's age appropriate. Then she said what I got very, very, angry at. She stated that if I write about abortion, drugs, sexuality, or any other non age appropriate topic, that it will be automatically given a 0% grade. So, yeah. Bitcoin's like killing babies and being gay, I guess?
Tell me what you guys think about this. If you want, you can vote this up to spread the word. But thanks for reading this guys. :)
EDIT:
So, you guys wanted to see the document. Well, here it is:
How to Mine Bitcoin
Short on money? Want to make some extra dough for the holiday season? Try Bitcoin! Bitcoin is an online digital currency. Right now, 1 Bitcoin is worth $640! But, did you know that you can create these coins, and help the network at the same time? This is a process called “mining,” and you can do it too! You're only going to need a few things for this. Firstly, I recommend not trying to mine with your home computer. You need a somewhat expensive machine called an ASIC. ASIC stands for application specific integrated circuit. This is just fancy talk for a very power computer that can only mine Bitcoin. Now, these range anywhere from $15 to $25,000, but I have a recommendation for you. It's called a KnCMiner Jupiter, and it's very fast. They're only $5K, which may seem expensive at first, but you can mine about half a Bitcoin PER DAY! That's over $300! You're also going to need a power supply. I recommend a Cooler Master V850. That's what I use. Next, you need an Ethernet cable, plugged into the router and miner. Finally you need a Bitcoin wallet. It can be on your computer or from blockchain.info. Get your address, beginning with a 1, ready! Now comes mining. First, find the miner's IP address. Go to your router's homepage – which is normally 192.168.1.1 – and look for something like “Connected Devices.” Then, it should be labeled “Jupiter” and then some numbers. Then go to the address that it says it is. This may be 192.168.1.145, or something like that. Now, it will say to log in. Log in with the username and password “admin.” This should bring a page up with numbers. You're done with that. Now, go to the mining tab. For the pool, use “mining.stratum.eligius.st:3334” without the quotes. Then, for the user, put your Bitcoin address. For the password field, put a simple “x.” It can be anything, but x is simple to remember. The pool could go down at any time, so be prepared! Get an account at btcguild.com, and make a worker. It shows this on the site. Then connect the miner using the stratum address. Also, be prepared for your earnings to slowly go down. There is a new difficulty every week, which it means it's harder to get a coin. But, don't worry! The price is going up. 2 years ago, it was worth $6! It's gone up over 100x since then! Also, that's the other thing. The price may crash. If it does, don't fret! The price will be back up over that in no time! One more thing before this ends. Bitcoin is NOT illegal. Nor is mining. The US government actually has no problem if you use Bitcoin, as long as you use it legally. There are multiple sites that you can buy contraband, like drugs and guns. Stay away from these sites! In conclusion, Bitcoin is an amazing thing. I mine it myself with a KnCMiner Jupiter. There may be some risks, but they're like any job. I've actually paid off the miner in less than 1 month! So, Bitcoin can really help our economy. It can help the WORLD economy! 
Also, thanks guys for all the support! :)
EDIT #2:
"A" Cyber School is just like homeschool. I stay at home and do my work on the computer. The only contact with teachers is situations like this. When I have an assignment to submit.
EDIT #3:
I am not saying being gay and abortion are bad. If anything, some of my best friends are gay. I'm putting this in words that she would use. Not mine.
EDIT #4 A.K.A. THE PROOF
Well, you guys think it's fake. I edited the files down so it wouldn't reveal any personal info of the teacher or myself. Here you go:
http://imgur.com/a/SdlUg
submitted by Inception1337 to Bitcoin [link] [comments]

I had like 3 friends ask me how to build a PC in the past week so I made this to help them.

(Reddit Edit: Help my improve the document with productive constructive comments on what I got wrong or messed up! Im only human lol
Also a lot of this is supposed to be kinda humorous. I didn't think I had to say that but, hey, its the internet.
I appreciate the positive and productive comments! )
Beginners basic guide to building your own PC as of early 2018
(EDIT: Sorry for being a MSI/Corsair Fanboy)
Heres a collection of thoughts to consider when building your own personal PC
As always Id personally use PCPartPicker.com to configure your parts and for further thoughts on compatibility.
First off building a computer is 100% based around what you plan to use the computer for.
Here are a few uses and generic ideas of what to go for. Audio Editing: Lots of small tasks that need to be completed quickly without lag. - Fast Processor( >4GHZ) - Fast RAM (MHZ) -At least 16 gigs! - Fast Storage, SSD manditorily - M.2 or PCI for best performance. - Shitty Graphics card, graphics card there only to keep the cpu from doing other tasks when working. - Can be a few generations or years old. - Many screens for lots of plug in windows to be open Video Editing: Lots of large to render and files to read. - Multi core processor the more the merrier - SSD for fast read/write of large video files. - Insane graphics card, AMD graphics cards are debatibly better but the nvidia Quadro series are specific for video rendering. Gaming: No more than 4 cores intense graphics card - 92% of games are not coded for more than 4 cores so why spend the extra money for it. - SSD for quick load screens - Nvidia cards, 10 series, the higher the number the better. Titan cards for MAXIMUM OVERDRIVE! Coding: quick processor for lots of small tasks. Ergonomic peripherials? - Dear god please dont use a mechanical keyboard so that your coworkers dont kill you. Home office: Everything can be a few gens behind so you can get the best power per dollar spent. - Sorry that Gateway doesnt exist anymore. I guess try Dell... 
Parts (Expensive Legos)
CPU (tells things to go places and outputs data) Basically three main routes to go for: Intel, AMD, or ASIC. Intel - Gaming, Data center, Hackintosh Pros: Cooler, Faster speed (GHZ), short small tasks faster Cons: $$$$, less cores AMD - Gaming, Personal Computing, Large task processing Pros: Lots of cores, better price per performance, faster processing of large tasks Cons: Hot chips, large chips?, compatibility issues with MacOS. ASIC - "Application-specific integrated circuit" Pros: Does the task that they are made to do insanely efficently, great for mining. Cons: Literally does nothing else. Holy hell these are expensive, very hot (fans will get loud) CPU Cooler (Im a big fan) Most come with an in box cooler that are ok but please buy aftermarket. In Box - the free shitty cooler that comes with the processor. Pros: Free. Cons: Ugly, makes chip run hot, hard to clean Air cooler - oldest type of cooler but new designs are highly efficent. Pros: Only cooler that has the possibility of being 100% quiet, most likely cheaper Cons: large, if cooler isnt large enough for the chips thermal output the fans will be loud. Liquid - Custom pipes are beautiful, AIO is easy to install and offers similare performance. Pros: Looks cool, great temperatures, "quiet" Cons: Water pump has possibility of being loud, possible spills Phase Change - uses the technology of refridgerators to cool the chip Pros: Can overclock until the chip breaks. (whats colder than cold? ICE COLD!) Cons: Loud (compressor noise), Large pipes, just why.... Motherboard (the convienacnce store of computer parts) Really just about what type of I/O you want. - MAKE SURE FORM FACTOR FITS YOUR CASE! (or vice versa) - Look for PCI lanes for expansion. - How many graphic cards do you have? - PCI based interfaces? - PCI SSD? - PCI DAC? - PCI WIFI? - USbs? Network? Audio? - How many lanes of RAM? - DOES IT FIT YOUR PROCESSOR!?! (really tho) - M.2? - How many sata interaces? Good Brands: MSI, ASUS, Gigabyte Bad Brands: AS(s)Rock, Dell Memory (Dory) - The more the merrier - No less than 8gb for a functional windows machine (16 gb to never have a problem) - Use all the lanes your computer has to offer! the more lanes to access the faster the data can travel! -Imagine drinking a milkshake. If the straw is wider you can drink more of the milkshake than a skinny straw. - Faster MHZ for faster data access but give minimal performance differances - Please get ram with heat spreadders unles youre building a server with high airflow. - Make sure the type (DDR3 or DDR4) of RAM matches what your processomotherboard call for. Good Brands: Corsair, G.Skill, Ballistix Storage (Grandpa that remembers everythign about how things used to be but takes forever to learn a new tasK) Speed or massive storage? slower is cheaper. Golden ratio of speed/storage/price is 250-500 gb SSD and a 1+ tb disk drive. *Max speeds listed are for a single drive not RAID* Hard Disk Drives (HDD) - Cheapest and slowest - read/write speeds of < 0.5gb/s - 7200+ RPM or GTFO - Higher Speed drives can access data faster. - Do not move while powered up. physical parts will break. - Larger Cahche = faster Read/Write Speeds Pros: Cheap, Holds massive amounts of data Cons: Slower than molasses in a frezer Reputible Brands: Seagate, WD Solid State Drives (SSD) - necessity for quick boots and fast load screens (can only be re-written to so many times) - SATA based (2.5 inch)- Read/Write speeds capped @ 6 gb/s Pros: Most economical, form factor fits with old computers, Cons: "Slow" compared to other ssd's (but stil 12 times faster than a HDD) - M.2 based - Read/Write speeds capped @ 10 gb/s Pros: Size of a sick of gum! High End but not too expensive to be out of reach. Cons: Expensive for any size over 500 gb - PCI based - Read/Write speeds capped @ 20 gb/s for PCI3, x4 Pros: HOLY BANDWIDTH BATMAN! Faster than that little creepy ghost thats always in the corner of you eye Cons: You might have to take out a loan to buy one. *takes up a x4 PCI Lane* Reputible Brands: Samsung! Corsair, Plextor, Intel, Kingston, Crucial Video Card (that one kid that has thick glasses and is really good at math) - A regular old PCI card that handles all of the video rendering and output for your computer. - ASIC PCI cards. - The PCBs and chips are patented by two main companies but the differances come from line up and varying manufacturer cooling devices. - The more memory the better -NVIDIA (Team Green) Great for gaming, has specific card series for intensive rendering. Lazy driver updates. - Gaming - 900 series - Cheap - Low performance - Can play any video game made befrore 2010 on max settings - 1000 (ten) series - Expensive (thanks bitcoin miners...) - Great for VR! - Video Rendering -Quadro Series - Gaming and Rendering - Titan X - Maxwell based chip same as 900 series cards - Titan XP - Pascal based chip same as 10 series cards -AMD (Team Red) Underdog does the same thing but slighly worse and cheaper. (except video rendering) - Gaming - RX 400 series - Cheap - Hot - RX 500 series - Cheap - Ok at VR and deacent gaming frame rates. - Not bad but not particularly great either. - Video Rendering - Fire Pro series - Gaming and Rendering - Vega series -Good luck finding one to buy lmao Case (Fancy clothing for your parts!) - Similar to human clothing you want it to do a few main things really well with compromises for each extreme. - Durability - Steel - Incredibly durable - Creates Farady cage for components - Heavy af - Magnets, just magnets.... - Rust over time - Aluminium - Light - East to bend for modding or "physical maintenance" - Less likely to rust - Huzzah for Farady cages! - Plastic - Just dont - no electrical Ground - no faraday cage - Light AF! - Breath (Airflow) - positive internal airflow! - larger fans push the same amount of air with less speed/noise - Looks - Window? - RGB - Cool Paint? - Fit all your parts - graphics card length/ clearacne - support for liquid cooling raiators? - How many spots for HDD/SSDs - Motherboard format - Cable management! Power Supply (FIGHT MILK) - Rule of thumb: BUy Powersupply that outputs 1.5 times the wattage that you need. - You can walk further than you can you can run. - The PSU can casually output 50-75% power for much longer than at 90-100% (without failure) - If you never demand enough wattage for it to get hot the fan doesnt have to turn on therefore making it quieter. - Modular means you can remove/replace the cables from the PSU. Reputible Brands: Corsair, EVGA Optical Drive (motorized cup holder) - You can download most things today so I'd suggest against it unless you really NEED to watch/write DVD's/CD's Operating System (software that makes everything work) Windows (Always Updates) - Compatible with just about everything - Easy to learn to code on! - POS inital browser - Likely to get virus's Linux (Penguins are cute) - Unique - takes less resources to run - Barebones - Incredibly personalizable! - Compatibility issues with just about everything MacOS (Linux but more annoying) - It is legal! - Great for art and your grandma that doenst know how to use computers! - User friendly - Compatibility issues with various hardware - Confusing/Limiting coding structure Peripherials (cables everywhere!) - Keyboard (higer Polling rate is better) - Mechanical (key is pressed at an exact stroke length every time - Mouse (Higher Polling rate is better) - more buttons = better? - DPI (Dots Per Inch) - In theory, if a mouse has 1600 DPI, then, if you move your mouse one inch (2.54 cm), the mouse cursor will move 1600 pixels - Higher DPI the faster your cursor is able to be moved. - Monitor - In theory the human eye cant see faster than 60 frames per second. - Keep in mind Pixel ratio! - 4k screen that is 22inches will have more pixels in a square inch than a 4k screen that is 28 inches. - Interface? - DVI (Analog) - thumbscrews..... - can do two monitors with one port! - support for 4k - VGA (Analog) - thumbscrews... - max resolution is 1440p - Display Port (digital) - nice button clip - supports 4k - HDMI (Digital) - 1.2 or higer supports 4k - DAC/Speakers/Headphones - Dont even get me started - Microphone - Dont get me started PT.2 Other (other) - UPS (uninterruptible power supply) Just a battery that allows your computer to have some time if the power ever goes out so that you have time to save your work. - Cable Organization materials! - Zipties - velcro - LED LIGHTING! - Manditory - Extra/Better fans - More pressure, less woosh - IFIXIT Pro Tech Toolkit - becasue who buys just one torx wrench. - Cute kitten mousepad - Yes, it has to be a cat. Dont argue 
This is a very general entry into building computers and what you should buy/look for. If you have any questions/comments send me an e-mail!
-Zac Holley-
submitted by Zac_Attack13 to pcmasterrace [link] [comments]

Stopping Botnets with GPUs

There has been a lot of talk about botnets, and potential solutions to help improve the profitability of mining XMR. I want to help shed some light on this.
This post is my attempt to take a look at one of the proposed solutions and to clear up some misunderstandings surrounding this problem. I do want to preface this by saying that I really don't know shit about shit. I a 21 year old college kid who like to pretend I can write code. I don't have any real knowledge on the matter, so take what I say with a grain of salt.
Make Monero work only on GPUs, and still be ASIC Resistant
So, this is a fun idea, but I think it is rooted in some misunderstandings about what is actually going on under the hood of the CryptoNote algorithm.
The first thing that I want to touch on is this idea of "ASIC Resistance" because I think it is a little misleading. People think that there is some magic "scratchpad" that makes BitMain and other ASIC companies shake in their boots. This is just silly. Monero is not ASIC resistant. Let me repeat that: MONERO IS NOT ASIC RESISTANT, and to help illustrate this point it is helpful to think about some other algorithms like SHA256 or Scrypt.
Think about these algorithms for a little bit. They were invented before the hardware that implemented them was produced. That is why people could straigh up mine Bitcoin back in the day. SHA256 existed, but then some smart engineers figured out how to make a chip that would run that algorithm faster. Same thing with Blake2s or Scrypt, algorithms came, engineers made hardware to suit it. CryptoNote, however, went in the opposite direction. For Bitcoin people fine tuned hardware to fit the algorithm, the CryptoNote developers on the other hand fine tuned their algorithm to fit the hardware.
When people say
Monero is ASIC resistant
They think that this means that nobody will be able to build an ASIC to mine for the token. However, what they are actually saying is
The ASICs for Monero already exists, and it is everywhere. Everyone already has the Monero ASIC in their home PC.
See, people think that Monero is some special unicorn, and that companies like BitMain, Intel, or Nvidia are not able to outsmart the algorithm to make any "real ASICs." That is just not true.
If Intel wanted, they could make a machine tomorrow that would crunch a few megahashes per second. So could Nvidia, or AMD, or BitMain. The reason that they dont is because fast memory is expensive.
Any of them could make such a product, they dont because nobody would buy it. It would cost so so so much more than you would ever make mining with it. Monero is only "ASIC resistant" because the supply of fast memoery is low, if this changes then Monero if fucked. CryptoNote is a proof-of-work algorithm, yes, but really it is more like a proof-of-memory-speed algorithm. You can 100% make an ASIC for that.
This brings be to why the algorithm cannot be "fixed" to work well on GPUs while still being ASIC resistant. GPUs have slow memory. If you take a proof-of-fast memory algorithm and make it work better on slow memory then you will be trading the only thing that makes it "ASIC Resistant". They are mutually exclusive.
It literally cannot both be optimized for GPUs while still keeping BitMain out; because BitMain essentially makes optimized GPUs.
In closing
It is just not a thing.
If I got anything wrong absolutely call me out, I want this post to help bring understanding and if is is actually just muddying the water i will take it down :D
Let me know your thoughts :D
Edit: Here, when i use the term ASIC i am loosely saying "the most profitable machine to mine for a token"
submitted by NanoBytesInc to Monero [link] [comments]

ELi5/AMA Cryptocurrency & Mining Thread

Based upon interest shown in my post here earlier today, the following is a ELi5 and AMA post on my perspective as a cryptocurrency investor and miner, specifically how I see the cryptocurrency space impacting AMD's performance in the near to medium term (0-3 years).
My Background:
I am not a computer scientist, and many on this form know significantly more than I ever will in regards to computing, computing hardware design, and software. Take this into consideration when reading my post, and feel free to open up discussion if you disagree with me. I am always looking to learn / assess new perspectives.
I do though have a background in STEM, until recently have followed AMD, Intel, and NVIDIA closely in regards to consumer and enthusiast hardware release, and have been mining Ethereum on a hand-built machine for roughly the past year, and investing in crypto for a decent amount of time as well. Given this, I believe that I can provide insight into the cryptocurrency and crypto mining realm, which is tightly coupled to AMD's GPU sales.
My Motivation for Writing This:
About a year ago I was a daily browser of this sub. Check my profile history if you wish. It was this very sub that gave me confidence to make my first investments outside of a 401k. Through this sub’s members I laid a foundation for making future investments that I will carry with me through life.
How I Got Started In Cryptocurrency:
Ironically, my start in cryptocurrency came through this very sub. As a daily follower of AMD_STOCK, during the initial Ethereum run-up early last year AMD and NVIDIA GPU’s were selling like hotcakes. Prices for GPU’s released months prior were rising instead of falling. I had no clue what a cryptocurrency even was. I distinctly remember reading through a post on this sub explaining the GPU shortage. It was simply “Ethereum”. I don’t know why, but this post struck me more than it should have. How could a shortage of hundreds of thousands of GPUs, totaling millions of dollars, be summed up in one word? This was the entrance to the rabbit whole that is cryptocurrency, or what I think is more telling, the financial and supply chain tech revolution.
Cryptocurrency Eli5:
Cryptocurrency is currently so much more than Bitcoin. Cryptocurrency is currently the financial, supply chain, + whatever else it ends up touching, technology revolution that is currently taking place as we speak. Cryptocurrency simply is a set of protocols that allow monetary/data transaction, smart contracts (think “if a, do b”), and/or storage in a distributed and trustless way, without a middle man.
Eli5:
It is a system that allows you and little Johnny from down the street to pay each other allowance money for things, without your mommies needing to get involved to make sure no one is getting cheated (Peer to Peer Payments). It can also allow you and Johnny to make deals with each other, and Johnny won’t be able to get out of it by saying “just kidding” later on (Smart Contracts). In both of these cases, you and Johnny write down the agreed upon payment, deal, information on a piece of paper, sign your names, and then send it out to everyone you know. Once those people recognize your and Johnny’s signature they sign it as well (distributed ledger). If there are any disagreements later, you look at the piece of paper and see what actually happened. For much more detail, visit cryptocurrency or some of the other cryptocurrency subs.
Proof of Work (PoW) vs Proof of Stake (PoS):
I had talked previously about handing out a copy of transactions to other peers for consensus. I was referring to a distributed ledger. This allows those who use the network to look over previous transactions and come to an agreement upon past history, avoid double spends (someone giving the same dollar to two different people), and verify a user’s current funds. Well, it doesn’t exactly work like that, and different cryptocurrencies employ different “consensus mechanism’s”. IT IS THESE CONSENSUS MECHANISMS THAT ARE OF IMPORTANCE AS AMD INVESTORS. I’ll try to go through the most prominent ones below.
Consensus Mechanisms:
Eli5: They solve the question: What if you and Johnny both hand out copies containing different information? Who decides what the truth is?
Proof of Work (PoW): Eli5: Proof of Work is like if you and Johnny hand out copies of your transactions to each of your classmates, the teacher decides that this isn’t a democracy, and that not everyone gets to vote on what they think happened. The teacher says that for each math problem in today’s math quiz a student gets right, they get one vote to put in the jar up at the front of the class. After the quiz is done and everyone puts their votes in the jar, the teacher then reaches in and grabs a random vote on if you or Johnny were telling the truth. It is then recorded. Also, the student’s who’s vote was selected gets a gold star today (mining rewards, what makes this all profitable for miners). How is AMD involved in this? AMD’s GPU’s are what solves the math problems for the students in this example. The more math problems that they can solve correctly before the quiz is over, the higher chance that they have at getting to decide what is recorded on the ledger, and thus receive mining rewards (free cryptocurrency).
Proof of Stake (PoS):
Eli5: Well the teacher decided that she didn’t like doing math tests anymore because they took too much time and thought that the paper and pencils consumed during the quiz’s were a waste of the school’s resources (electricity used in PoW). She decided that instead, each student would get one vote based upon how many gold stars (how much cryptocurrency) they already have. But the catch is, if a student is caught lying somehow on their vote, they get all of their current gold stars taken away. This is what is “At Stake” in the Proof of Stake model. How does this differ from PoW from an AMD perspective? Well, if you haven’t noticed, there are no more math problems to be solved in this model, thus high-performance GPUs are not necessary for PoS mining. This provides several advantages in terms of energy savings, but would not be good for AMD’s sales.
The Current State of The Market in Regards to PoW vs PoS:
Currently, a majority of cryptocurrencies operate on the PoW model, but that ratio is dwindling as currencies switch over to PoS models. PoS is seen to provide several advantages, with major ones being energy efficiency and a potential reduced transaction time. Major cryptocurrencies using PoW include Ethereum, Monero, Zcash, etc.. with the most profitable over the past year usually being Ethereum. Ethereum is currently planning on switching over to a PoS model, but that transition has been delayed, and now has planned to first transition to a hybrid model of PoW and PoS before fully transferring over to PoS. I have not heard any rumors from Monero or Zcash about transitioning over to PoS in the short term.
My Perspective/Predictions on AMD GPU Sales Over the Short and Medium Term:
  1. Cryptocurrency over the medium term will continue to flourish/rise. There may be a major “crash” in the future, but I believe that is at least a year away, and a crash event would still leave the total market cap higher than it currently is valued at ~600 Billion dollars.
  2. It will be 1+ year before a significant portion of current major PoW currencies phase out PoW for PoS.
  3. AMD will continue to sell out GPU products for the foreseeable future (~1 year) as 1 & 2 above create a recipe for sustained/increased profitability in cryptocurrency mining.
  4. Long Term – PoW will likely fade away as PoS grows in popularity. I foresee this happening in the 1-3 year time frame. What happens to AMD? Well, if the transition happens fast, gaming GPUs will flood the market and their new hardware sales will obviously be challenged to compete. If the transition happens slower, I see the trend being less violent to AMD as a company if they can keep performance improvements from generation to generation up. Although there will still be a flood of cheap used hardware on the market, before sufficient hardware floods the market new higher performance hardware could be released making old hardware obsolete for mid to high end gamers. This would be a huge win for AMD investors as it would minimize any impact to sales.
  5. Because of the statement above, pay close attention to the PoS transition timeframe for Ethereum. This will be the first mass selloff of consumer GPUs.
Things I did not Cover:
  1. AMD GPUs are typically more profitable than NVIDIA’s for cryptocurrency mining and why.
  2. You cannot mine Bitcoin with consumer GPUs profitably. They require custom hardware (ASIC).
  3. Getting into the actual process of how to mine (see the many Ethereum mining subs like ethermining for answers).
  4. Have I made a profit – Yes, I have paid off my investment and then some.
  5. What do I think of mining vs just investing – Okay I’ll answer this one. I personally would choose to invest directly into the cryptocurrencies over mining, unless you are using your existing gaming GPU, as I believe that investing will yield potentially an order of magnitude higher ROI over the next 2-5 years. Start with cryptocurrency and go from there. If you have specific questions, feel free to PM me. This is coming from a miner mind you.
  6. What coins are profitable and what to mine? This website is a good resource: https://whattomine.com/
  7. My exit plan for the market? Well, I’ve stated above that I think a major crash (greater than 50%, we see 50% crashes every 3 or so months, but these are often largely exceeded by gains after) in this market will likely dip to current or slightly below current total market cap. I could be wrong though, but that’s a risk I am willing to take given my deep dive on this space. I currently hold currencies that will pay PoS mining rewards. I plan to sell these rewards.
Thanks for reading guys. I hope you found some useful information. If you have questions or see anything you disagree with feel free to comment!
TLDR: I see cryptocurrency, cryptocurrency mining, and thus AMD GPU sales holding strong for the foreseeable short term ~1 year. This is just my opinion, do your own research, I could be wrong, but I live in this space.
submitted by Usrname_Not_Relevant to AMD_Stock [link] [comments]

I had like 3 friends ask me how to build a PC in the past week so I made this to help them. Feel free to use or send me an e-mail if you want the txt file

(Reddit Edit: Help my improve the document with productive comments on what I got wrong or messed up! Im only human lol
Also a lot of this is supposed to be kinda humorous. I didn't think I had to say that but, hey, its the internet.
I appreciate the positive and productive comments! )
Beginners basic guide to building your own PC as of early 2018
(EDIT: Sorry for being a MSI/Corsair Fanboy)
Heres a collection of thoughts to consider when building your own personal PC
As always Id personally use PCPartPicker.com to configure your parts and for further thoughts on compatibility.
First off building a computer is 100% based around what you plan to use the computer for.
Here are a few uses and generic ideas of what to go for. Audio Editing: Lots of small tasks that need to be completed quickly without lag. - Fast Processor( >4GHZ) - Fast RAM (MHZ) -At least 16 gigs! - Fast Storage, SSD manditorily - M.2 or PCI for best performance. - Shitty Graphics card, graphics card there only to keep the cpu from doing other tasks when working. - Can be a few generations or years old. - Many screens for lots of plug in windows to be open Video Editing: Lots of large to render and files to read. - Multi core processor the more the merrier - SSD for fast read/write of large video files. - Insane graphics card, AMD graphics cards are debatibly better but the nvidia Quadro series are specific for video rendering. Gaming: No more than 4 cores intense graphics card - 92% of games are not coded for more than 4 cores so why spend the extra money for it. - SSD for quick load screens - Nvidia cards, 10 series, the higher the number the better. Titan cards for MAXIMUM OVERDRIVE! Coding: quick processor for lots of small tasks. Ergonomic peripherials? - Dear god please dont use a mechanical keyboard so that your coworkers dont kill you. Home office: Everything can be a few gens behind so you can get the best power per dollar spent. - Sorry that Gateway doesnt exist anymore. I guess try Dell... 
Parts (Expensive Legos)
CPU (tells things to go places and outputs data) Basically three main routes to go for: Intel, AMD, or ASIC. Intel - Gaming, Data center, Hackintosh Pros: Cooler, Faster speed (GHZ), short small tasks faster Cons: $$$$, less cores AMD - Gaming, Personal Computing, Large task processing Pros: Lots of cores, better price per performance, faster processing of large tasks Cons: Hot chips, large chips?, compatibility issues with MacOS. ASIC - "Application-specific integrated circuit" Pros: Does the task that they are made to do insanely efficently, great for mining. Cons: Literally does nothing else. Holy hell these are expensive, very hot (fans will get loud) CPU Cooler (Im a big fan) Most come with an in box cooler that are ok but please buy aftermarket. In Box - the free shitty cooler that comes with the processor. Pros: Free. Cons: Ugly, makes chip run hot, hard to clean Air cooler - oldest type of cooler but new designs are highly efficent. Pros: Only cooler that has the possibility of being 100% quiet, most likely cheaper Cons: large, if cooler isnt large enough for the chips thermal output the fans will be loud. Liquid - Custom pipes are beautiful, AIO is easy to install and offers similare performance. Pros: Looks cool, great temperatures, "quiet" Cons: Water pump has possibility of being loud, possible spills Phase Change - uses the technology of refridgerators to cool the chip Pros: Can overclock until the chip breaks. (whats colder than cold? ICE COLD!) Cons: Loud (compressor noise), Large pipes, just why.... Motherboard (the convienacnce store of computer parts) Really just about what type of I/O you want. - MAKE SURE FORM FACTOR FITS YOUR CASE! (or vice versa) - Look for PCI lanes for expansion. - How many graphic cards do you have? - PCI based interfaces? - PCI SSD? - PCI DAC? - PCI WIFI? - USbs? Network? Audio? - How many lanes of RAM? - DOES IT FIT YOUR PROCESSOR!?! (really tho) - M.2? - How many sata interaces? Good Brands: MSI, ASUS, Gigabyte Bad Brands: AS(s)Rock, Dell Memory (Dory) - The more the merrier - No less than 8gb for a functional windows machine (16 gb to never have a problem) - Use all the lanes your computer has to offer! the more lanes to access the faster the data can travel! -Imagine drinking a milkshake. If the straw is wider you can drink more of the milkshake than a skinny straw. - Faster MHZ for faster data access but give minimal performance differances - Please get ram with heat spreadders unles youre building a server with high airflow. - Make sure the type (DDR3 or DDR4) of RAM matches what your processomotherboard call for. Good Brands: Corsair, G.Skill, Ballistix Storage (Grandpa that remembers everythign about how things used to be but takes forever to learn a new tasK) Speed or massive storage? slower is cheaper. Golden ratio of speed/storage/price is 250-500 gb SSD and a 1+ tb disk drive. *Max speeds listed are for a single drive not RAID* Hard Disk Drives (HDD) - Cheapest and slowest - read/write speeds of < 0.5gb/s - 7200+ RPM or GTFO - Higher Speed drives can access data faster. - Do not move while powered up. physical parts will break. - Larger Cahche = faster Read/Write Speeds Pros: Cheap, Holds massive amounts of data Cons: Slower than molasses in a frezer Reputible Brands: Seagate, WD Solid State Drives (SSD) - necessity for quick boots and fast load screens (can only be re-written to so many times) - SATA based (2.5 inch)- Read/Write speeds capped @ 6 gb/s Pros: Most economical, form factor fits with old computers, Cons: "Slow" compared to other ssd's (but stil 12 times faster than a HDD) - M.2 based - Read/Write speeds capped @ 10 gb/s Pros: Size of a sick of gum! High End but not too expensive to be out of reach. Cons: Expensive for any size over 500 gb - PCI based - Read/Write speeds capped @ 20 gb/s for PCI3, x4 Pros: HOLY BANDWIDTH BATMAN! Faster than that little creepy ghost thats always in the corner of you eye Cons: You might have to take out a loan to buy one. *takes up a x4 PCI Lane* Reputible Brands: Samsung! Corsair, Plextor, Intel, Kingston, Crucial Video Card (that one kid that has thick glasses and is really good at math) - A regular old PCI card that handles all of the video rendering and output for your computer. - ASIC PCI cards. - The PCBs and chips are patented by two main companies but the differances come from line up and varying manufacturer cooling devices. - The more memory the better -NVIDIA (Team Green) Great for gaming, has specific card series for intensive rendering. Lazy driver updates. - Gaming - 900 series - Cheap - Low performance - Can play any video game made befrore 2010 on max settings - 1000 (ten) series - Expensive (thanks bitcoin miners...) - Great for VR! - Video Rendering -Quadro Series - Gaming and Rendering - Titan X - Maxwell based chip same as 900 series cards - Titan XP - Pascal based chip same as 10 series cards -AMD (Team Red) Underdog does the same thing but slighly worse and cheaper. (except video rendering) - Gaming - RX 400 series - Cheap - Hot - RX 500 series - Cheap - Ok at VR and deacent gaming frame rates. - Not bad but not particularly great either. - Video Rendering - Fire Pro series - Gaming and Rendering - Vega series -Good luck finding one to buy lmao Case (Fancy clothing for your parts!) - Similar to human clothing you want it to do a few main things really well with compromises for each extreme. - Durability - Steel - Incredibly durable - Creates Farady cage for components - Heavy af - Magnets, just magnets.... - Rust over time - Aluminium - Light - East to bend for modding or "physical maintenance" - Less likely to rust - Huzzah for Farady cages! - Plastic - Just dont - no electrical Ground - no faraday cage - Light AF! - Breath (Airflow) - positive internal airflow! - larger fans push the same amount of air with less speed/noise - Looks - Window? - RGB - Cool Paint? - Fit all your parts - graphics card length/ clearacne - support for liquid cooling raiators? - How many spots for HDD/SSDs - Motherboard format - Cable management! Power Supply (FIGHT MILK) - Rule of thumb: BUy Powersupply that outputs 1.5 times the wattage that you need. - You can walk further than you can you can run. - The PSU can casually output 50-75% power for much longer than at 90-100% (without failure) - If you never demand enough wattage for it to get hot the fan doesnt have to turn on therefore making it quieter. - Modular means you can remove/replace the cables from the PSU. Reputible Brands: Corsair, EVGA Optical Drive (motorized cup holder) - You can download most things today so I'd suggest against it unless you really NEED to watch/write DVD's/CD's Operating System (software that makes everything work) Windows (Always Updates) - Compatible with just about everything - Easy to learn to code on! - POS inital browser - Likely to get virus's Linux (Penguins are cute) - Unique - takes less resources to run - Barebones - Incredibly personalizable! - Compatibility issues with just about everything MacOS (Linux but more annoying) - It is legal! - Great for art and your grandma that doenst know how to use computers! - User friendly - Compatibility issues with various hardware - Confusing/Limiting coding structure Peripherials (cables everywhere!) - Keyboard (higer Polling rate is better) - Mechanical (key is pressed at an exact stroke length every time - Mouse (Higher Polling rate is better) - more buttons = better? - DPI (Dots Per Inch) - In theory, if a mouse has 1600 DPI, then, if you move your mouse one inch (2.54 cm), the mouse cursor will move 1600 pixels - Higher DPI the faster your cursor is able to be moved. - Monitor - In theory the human eye cant see faster than 60 frames per second. - Keep in mind Pixel ratio! - 4k screen that is 22inches will have more pixels in a square inch than a 4k screen that is 28 inches. - Interface? - DVI (Analog) - thumbscrews..... - can do two monitors with one port! - support for 4k - VGA (Analog) - thumbscrews... - max resolution is 1440p - Display Port (digital) - nice button clip - supports 4k - HDMI (Digital) - 1.2 or higer supports 4k - DAC/Speakers/Headphones - Dont even get me started - Microphone - Dont get me started PT.2 Other (other) - UPS (uninterruptible power supply) Just a battery that allows your computer to have some time if the power ever goes out so that you have time to save your work. - Cable Organization materials! - Zipties - velcro - LED LIGHTING! - Manditory - Extra/Better fans - More pressure, less woosh - IFIXIT Pro Tech Toolkit - becasue who buys just one torx wrench. - Cute kitten mousepad - Yes, it has to be a cat. Dont argue 
This is a very general entry into building computers and what you should buy/look for. If you have any questions/comments send me an e-mail!
-Zac Holley-
submitted by Zac_Attack13 to buildapc [link] [comments]

My Experience: From FX-8350 to R7-1700

Upgrading from an FX-8350 to a R7-1700.
Just a bit about me – I have been building computers since the mid 80’s. I missed the 8-inch floppy disk era, but came on board when dual 5.25” was considered mainstream and a 10-megabyte full-height HDD was the mark of a power user. The first computer I built for my own enjoyment was an AMD X5-133 (a factory overclocked 486 faster than the Pentium-75), and I’ve used a wide variety of systems since then, including a Pentium Pro-200 which served me well in college and a K6-2 which I took to quite a few LAN parties. While I’ve always had Intel notebooks, my PC’s have been AMD for quite some time now. I decided to upgrade my current main machine, which is an FX-8350 with a mild 4.4Ghz overclock. I was using 2x8GB Crucial Ballistix DDR3-1600 and a Sapphire Radeon Fury Nitro. While I know the R5-1600x would be a better bet for a pure gaming build, I have a soft spot for 8-core machines. I had been tempted to pull the trigger on an i7-7700k for a while, but the timing never worked out. But when I found the R7-1700 at a deep discount and an X370 motherboard on the shelf next to it – I couldn’t resist the siren call of a new build.
Here are my thoughts about the process:
AM4 is physically the same as AM3 from a build perspective, except for the mounting holes. I don’t know what was so important about making the holes have different offsets, but this makes it much more difficult to get quality cooling. Not all manufacturers have brackets yet, and I’m still waiting on Cooler Master to release the brackets for my Siedon 240.
The new motherboard feels very different from my AM3 board. My FX-8350 sat on an ASUS M5A99FX Pro R2.0. It was, for lack of a better word, a very workstation-ish board. 4 PCIx16 slots, 10x USB ports (2 of the USB 3.0), triple USB 2.0 front panel headers (and a USB 3.0 front panel header as well), eSATA on the rear panel, beefy VRM and Northbridge cooling, Toslink output for audio, and so on. The board itself is full of tiny components, support chips, and ports. Granted, many of these connectors are outdated (eSATA and USB2.0), and the PCIe is only 2.0 instead of current-gen 3.0, but there is a LOT of connectivity. Few people paired an FX chip with triple of quad-GPU for gaming, but I know a fair number of people used these for bitcoin mining back before there was widespread ASIC support and back then GPU mining was the most cost-effective way to mint cryptocurrency. Extra PCIe slots could be used for dedicated video capture, PCI-based storage, a RAID card, etc... Having 4 full-size slots allows this kind of flexibility. The new motherboard is an Asrock Fatal1ty x370 Gaming K4. It does not feel very workstation-ish at all. It has only two 16x PCIe slots (and when they are both in use they are only 8x), 8 USB ports on the rear panel, and a much less “busy” motherboard. Very few support chips litter its surface. Instead of a workstation component, it feels much more like a luxury consumer product. This is not a bad thing – just something I noticed while building the system. The rear IO shield is red and black to match its gaming aesthetic, it includes things like premium audio (including a very nice headphone amplifier for the front panel connectors), and while it only has 8x USB ports on the back, 6 of them are USB 3.0 and two of them (including a type-C connector) are USB 3.1 gen2. It includes RGB LED’s under the chipset heatsink and three separate RGB LED controller ports (one of which is used for the boxed cooler), Intel gigabit Ethernet, and dual M.2 slots (one of which connected directly to the CPU). It is very different in “feel” from the older ASUS board, even down to things like a shroud for the external connectors and metal-reinforced PCI slots. I must say, its more aggressive appearance and near-empty areas appeal to me. It does, however, funnel the builder into a particular configuration: limited fast storage through the M.2 slots, slow(er) storage through the 6x SATA ports, all external devices should be USB 3. Personally, these limitations didn’t restrict me for this build, since that was how I was going to set it up anyway, but the fewer connectivity choices might cause some pause for others. The only thing I don’t like about this board is the 20 second POST times. 20 seconds every time. Resuming from sleep is very fast, just reboots are slow. That’s really it. I have no substantive complaints other than that – well, and the memory speed limitations – more on that below.
The Wraith Spire cooler is without doubt the best looking box cooler I’ve ever seen. The symmetrical cylinder look, combined with the LED logo and RGB ring are very striking. I can see why many people have asked to order one, though I think for the 1700X and 1800X they are better off without it. I’ll explain why further down.
Initial hardware setup was very easy. I was able to flash to the newest 2.0 BIOS without any hassle using a DOS USB flash boot drive. The 2.0 BIOS has the newest AGESA code from AMD, as well as support for the R5 processors and better DDR4 compatibility. I didn’t want to cheap out on RAM since apparently Ryzen is sensitive to DDR4 speeds for the latency between cores. I bought the cheapest 16GB DDR4-3200 kit I could find (the EVGA SuperSC 2x8GB), for which I paid $115. While I was not able to get it to boot at 3200, I could get 2933 simply by activating XMP, then manually changing the speed from 3200 to 3000. I then tested it with MemTest86 for two complete cycles, which it passed without errors. I have encountered zero memory issues with these RAM sticks running at 2933. Since this motherboard does not officially support DDR4-3200 at all, I figure this is a good outcome. I am curious to know whether anyone has gotten 3200 on this board – that is, whether the lack of 3200 memory on Asrock’s QVL is a marketing issue or an actual hardware limitation – but I didn’t want to spend nearly double that amount in order to get AM4 verified memory (G.Skill’s FlareX), and 2966 seemed fast enough from the benchmark results I had read.
My old setup had a Samsung 850 EVO 256gb SATA6 drive as the primary boot/gaming drive. It seemed plenty fast but it had become too small for my needs, so this seemed like a good opportunity to buy a new SSD. I originally thought the NVMe drives would be out of my price range, but I bought the Intel 600p 512GB drive for only $10 more than I would have paid for a premium SATA6 drive. Though the 600p is without doubt the SLOWEST NVMe drive out there, it has 3x the read speed as the SATA6 drives, and most of what I am doing with it is trying to get quicker load times. If I was using it for professional workloads (as a video editing scratch drive, for example), I would need much higher sustained write speeds and then Samsung would be the obvious answer. I just didn’t want to spend an extra $80 on write performance that I’d never notice, and the 600p has been an excellent boot/gaming drive.
Ok, back to the Wraith Spire. I tend to have bad luck with the silicon lottery. My FX-8350 was not able to be stable above 4.4Ghz with reasonable temperatures. I was hoping I would be able to get better results from the R7-1700, since general reports indicated that it overclocked well. Unfortunately, it is difficult to tell how good of an overclock I am getting since I can find no good information about maximum recommended temperatures for this chip. Some people say 75c is the maximum safe temp. Others say 75c is a fine everyday 24/7 temp. Others say they are running it at 80c all the time without any issues at all. Steve at Techspot was getting 88c and 90c when overclocking the 1600X and 1500X using the stock coolers and without any instability – were those dangerous temps or totally fine? Nobody seems to know. I like my overclocks to be set-and-forget. I want to get it dialed in and then leave it for years without worrying that it will burn up or degrade or that in this or that application I have to turn back to stock speeds because of the thermals. Since I don’t know what max safe thermals are, I just have to guess based on stock thermals.
For stock speeds, the Wraith Spire does a good job. It is very quiet, and after a few BIOS fan-curve tweaks, it keeps the chip around 35-38 at idle, and around 68-70 on Prime95 (Small FFT, for maximum temperature generation). Incidentally, it also hits 70 if I run Cinebench a bunch of times in a row as well, so I don’t consider the Small FFT test to be totally unrealistic for the load this chip might encounter. From what I can tell, these are good normal temps. I can get 3.5Ghz by simply changing the multiplier and leaving the voltage at stock. This gives Cinebench numbers around the 1550 mark (roughly 6900k levels). Prime95 shows a modest boost in temperatures of 3-4 degrees C, and was stable even for several hours. If I push it to 3.6Ghz at stock voltage the system is unstable. At 3.7Ghz (the 1700’s boost speed for single-threaded loads) it is stable only if I give it 1.3v. While that is a totally fine voltage (AMD recommends up to 1.35v for 24/7), the Wraith Spire cannot handle a Prime95 Small FFT load anymore. I shut down the test and reverted the OC when the CPU read 89c. Given the fact that the Spire was meant to cool a 65w chip (and so probably is rated at no more than 85-95w), this is not a terribly surprising temperature – I wish I knew if it was dangerous. I have no doubt that a 240mm radiator or even a decent tower cooler will be more than enough to cool down my 3.7Ghz R7-1700. I am a little jealous of the people who just set the multiplier to 3700 and are good to go – lower voltages probably mean the Spire would be enough. But for me, it was not to be. I was halfway tempted to see at what temperature the chip would reduce its clock speed, but I didn’t want to burn up a chip I had just bought – might as well wait until I get bigger and better cooling to OC it to the 3.8-3.9 I hope it will reach.
Other than the OC temps it has been smooth sailing. Gaming feels more fluid than with the FX, even in games that I always thought were GPU-limited and/or running at 60fps with VSYNC on. Especially games that are sensitive to single-core performance (Heroes of the Storm is my latest addiction) there is a definite boost in 1% low and 0.1% low FPS. I have been using the Ryzen Balanced power plan from AMD and it seems to do a fantastic job keeping temps low when idle and letting the cores ramp up really fast when needed. I need to test whether the lack of core parking prevents it from hitting the 3.7Ghz boost as much as the regular Balanced plan allows. I think a simple CineBench single-thread comparison will do the trick.
I also tried streaming a bit – and it was able to generate 1080p60fps at x264-medium settings without being noticeable while in game. Later I edited some video of my kids – the final render speed was SOOOO fast. I am, on the whole, very happy with my upgrade. I get better single-core performance, much much better multi-core performance, along with faster disk speeds, and a more modern platform (with RGB lighting, M.2, USB 3.1, etc…).
Now if only I could find out appropriate temperatures…..
submitted by Morphon to Amd [link] [comments]

02-25 11:23 - 'I agree. In the beginning before Jihan Wu and China infiltrated the Bitcoin community, mining was just done by volunteers. It was all about helping humanity make progress. I mean somebody needs to put in the hard wo...' by /u/CampForRetardedKids removed from /r/Bitcoin within 67-77min

'''
I agree. In the beginning before Jihan Wu and China infiltrated the Bitcoin community, mining was just done by volunteers. It was all about helping humanity make progress. I mean somebody needs to put in the hard work. Because of this the price of Bitcoin skyrocketed from zero to 1. This was very good, it gave every human being much hope for the future, and maybe even the moon.
Then came the evil people like Roger Ver and that Japanese guy, forgot his name. They changed Bitcoin. Bitcoin now became big business. A horrible industry that is build upon slavery of machines and human beings. (I mean they are evil chinese people but still humans). And it uses to much electricity which is why segwit and LN network was invented. But now, Jihan Wu even create ASIC boots, which boosts the ASIC and so also need more electricity.
Anyway I can't continue like this. I need to go bed. Tomorrow is another day at camp for me.
'''
Context Link
Go1dfish undelete link
unreddit undelete link
Author: CampForRetardedKids
submitted by removalbot to removalbot [link] [comments]

06-07 18:21 - 'Hello World, This is bitcoins future. Hodl' (self.Bitcoin) by /u/BlazeWhale removed from /r/Bitcoin within 55-65min

'''
Hello World! This is my message for you from the future. I hope this survives the time transfer and lands in the correct timeline. Just a few checkpoints to make sure this message arrived to the correct timeline.
  1. Chinese invented the compass 9th-11th century.
  2. German Johannes Gutenberg invented the printing press.
  3. Alexander Graham Bell was the first to be awarded a patent for the electric telephone in 1876
  4. First world war 28 July 1914 to 11 November 1918
  5. Second world war 1939 to 1945
  6. Us 35th president John F. Kennedy was in November 1963
  7. May 22 Bitcoin Pizza Day
  8. The Times 03/Jan/2009 Chancellor on brink of second bailout for banks
  9. 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
It is the year 2035. First question what I would have wanted ask in 2017, if I ever got the opportunity to communicate into the future would be: what is the price of bitcoin? Well I would of course want to know the price measured in US dollars or Euros or some other fiat currency. What if I told you the fiat currency value hasn’t been relevant for the last 10 years. A draft beer costs about 2.0-2.5 satoshis (we call them stoshis), A meal in a restaurant around 6-8 stoshis, A good quality Pizza 5 stoshis. Cadrone transport 0.01 - 0.05 stoshi / km. I hope this helps you get the idea of the purchasing power we are talking about. I can briefly tell you about how the massive increase of bitcoins purchasing power rose so fast even the most optimistic bitcoin believers were surprised. There are many factors and events that all had an effect on the rising demand for bitcoins. 2016 after the most tech savvy liberal minded people had bought into bitcoin things started to happen. 2017 was the year when earlies (early adopters) started investing into bitcoin. (I know it’s funny we all thought in 2016-2017 that early adopters had been ones having bitcoin in the first 5 years after it was created). sidenote: Companies who have started working with bitcoin will see their stock value rise which will push more and more businesses to adopt bitcoin. The demand was huge in Japan, but no one really knew the real reason for Japan recognizing bitcoin as a legal method of payment (so absurd, bitcoin doesn’t a permission). I remember people speculating it was because Japan’s economy was terrible and the % of old population wasn’t decreasing. And yes people speculated correctly. After the famous, Tokyo based, bitcoin exchange called Mt.Gox collapsed in 2014 Japanese authorities had to look into what bitcoin was. It took sometime and eventually someone with enough political influence realized the potential. Japan had to play this whole thing smart, if they started buying bitcoin publicly the global FOMO (fear of missing out) would push the price quickly out of their reach and their Japanese Yen would turn into goat shit. So instead they started out by doing small things like legitimizing bitcoin as a payment method, Government services started accepting bitcoin, small amounts of taxes payable with bitcoins and all at the same time trying to buy as much bitcoins as possible without moving the price too much. Of course everyone knows secrets always spill out, especially government secrets. Soon South Korea was “legitimizing bitcoin” and it didn’t stop there. It started to spread. Some governments tried to stop it (Usa, Russia, Some European countries, India) but banning and/or over regulating it turned out to be useless. So what does a desperate government and banking system do when they have the ability to print unlimited amounts of fiat currencies and are losing their power to people. They print money and try to buy all the bitcoins up. Well I can tell you it didn’t work or well it worked in a nice way which made the unfair system of fiat currencies irrelevant. Some countries figured the potential of bitcoin at the same time as Japan and started doing exactly the same as Japan. Making their citizens aware of bitcoin and buying up bitcoin without signaling a panic buy for the others. Switzerland for example started selling bitcoins to their citizens by Swiss Federal Railways ticket machines. How smart is that? China on the other hand banned and unbanned bitcoin a lot in 2014-2015 timeframe. Then the PBOC “cracked” down on the Chinese exchanges, this was all because china wanted to make bitcoin look more attractive for the investors. China had already been buying bitcoins from 2014, small amounts without raising the price too much. This was a long term investment for china which paid off during the collapse of the US dollar and yuan. The second question that probably would interest me in the past (one of the reasons I postponed investing into bitcoin until the beginning of the year 2018) would be the “The Big Scaling Debate” which really looked at the time as fierce debating but it was really just a power struggle to control bitcoin. Segregated Witness was activated and looking from where I am currently standing it was the best technical solution which everyone actually agreed on but some people where blocking it by making up nonsense and stalling the progress. Funny thing is that once actually big chip manufacturers got interested in ASIC manufacturing and bitcoin mining lots of the bad acting bitcoin mining hardware companies found themselves out of business. We all know who we are talking about. For the technically literate I can’t offer much information from the present because it has gone over my understanding. Everything is connected to the bitcoin blockchain. Protocol upgrades made it possible to build layers on top of layers all secured by the hashing power of the bitcoin blockchain. My car’s private key is stored on a layer of the blockchain, my voting password is also there, I have a private key for my identity and the private keys for my kids identities as well as their medical record private keys. How has the planet changed? We finally reached a stage a few years ago where we got the future of planet earth on a level where it will be sustainable to live in as long as the sun doesn’t burn us down. Bitcoin played a big part in this. Deflationary currency has strange effects, nobody on earth produces crap anymore, meaning no cheap electronics that last only a few years, no plastic bags in stores, no cheap clothes that will last only a few times in a washing machine. Everything and I mean it when I say everything is made with high quality materials and products are made to last long. The demand for high quality long lasting items came from the people. Why would you use a few millibits which grew in purchase power every year to buy some crappy headphones that would last 1 year if you were lucky. If they were going to use their precious millibits they wanted something high quality which would last. Also 95% of the worlds energy is from renewable energy sources, when big bitcoin mining operations started struggling with their profit margins they looked at small bitcoin mining operations who had minimized the cost of electricity by using solar panels and hydropower. Funny how bitcoin mining operations trying to be more profitable boosted the use of renewable energy sources, ok I must add that the death of the petrodollar helped also. Electricity isn’t produced anymore for the need of humans it is produced to power the bitcoin mining facilities and we just use the leftover energy which is more than enough. You are currently in the phase of one of the first altcoin bubbles. These bubbles are part of the bitcoin learning curve for people. People tend to forget what bitcoin is about and then seek high % profits from altcoins. This will happen a few times more in history and most of the altcoins will slowly die away and be replaced by new “innovative” ideas. In the upcoming years the value that poured into altcoins will move into bitcoin. Some of the most biggest alts with minor use cases will survive for longer but their ideas will be built and secured properly on different layers of the bitcoin protocol. What do I regret the most? My biggest regret was not buying bitcoins when I first heard of them, also I regret buying a sailboat with 50% of my small bitcoin stash in 2019. Also I regret not getting into mining when it was still profitable for an average person in 2019. But I am happy I hodled the rest. (yes the hodl meme has survived all these years)
One cool thing we discovered besides sending information “back in time” is sending payments to the future. I will be generating the private key for the following bitcoin address on November 20th 2035. I will also login to reddit with the account Blazewhale to celebrate with those of you who are still here. Happy Hodling, price discovery is a bitch.
-BlazeWhale 1CXfRfJhMyr41z3LDiV6USuskUZxCBa1We
'''
Hello World, This is bitcoins future. Hodl
Go1dfish undelete link
unreddit undelete link
Author: BlazeWhale
submitted by removalbot to removalbot [link] [comments]

Bitcoin mining with Bitmain Antminer S9 - how to get ... Best Bitcoin Miner Machine Free download ️ Best BTC Miners ... What’s the Best Bitcoin Miner to buy in 2020? - YouTube Antminer S9 Bitcoin Miner - $8,000 per Year! - YouTube Buy An ASIC or GPU For Mining Right Now? - YouTube

Furthermore, Bitcoin ASIC technology keeps getting faster, more efficient and more productive so it keeps pushing the limits of what makes the best Bitcoin mining hardware. Some models of Bitcoin miners include Antminer S5, Antminer U3, ASICMiner BE Tube, ASICMiner BE Prisma, Avalon 2, Avalon 3, BTC Garden AM-V1 616 GH/s, VMC PLATINUM 6 MODULE, and USB miners . Think of a Bitcoin ASIC as specialized Bitcoin mining computers, Bitcoin mining machines, or “bitcoin generators”. Nowadays all serious Bitcoin mining is performed on dedicated Bitcoin mining hardware ASICs, usually in thermally-regulated data-centers with low-cost electricity. Don’t Get Confused. There is Bitcoin mining hardware, which mines bitcoins. There are also Bitcoin hardware ... Bitcoin Miner and Cryptocurrency mining provide ASIC Hardware Bitcoin Hosting and Quebec data center colocation solutions Lowest power rates from 50 to 70 per kWmonth December 2019 How to Choose the Best Bitcoin Mining Hardware . Read More. Ti2019q1 Cryptocurrency Mining Industry Quarterly. 1 Innosilicon T3 43T is the best low power consumption BTC miner and has the shortest payoff period ... Currently, ASIC is the fastest bitcoin mining software. Every six months, they improved the versions. So you can achieve fast bitcoin mining with our Latest ASIC's chips. But only ASIC miners at home is not possible because of high competition with fully professional bitcoin miners. That's why the industry introduced the concept of bitcoin mining cloud and bitcoin mining pool. Start Mining ... However, Bitcoin miners discovered they could get more hashing power from graphic cards. They support more than different currencies as well as 85 different mining rigs. Overall, it measures xxmm which best asic bitcoin miner app it possible to have a neat arrangement when running multiple miners simultaneously. It appears it is not, as many ...

[index] [49045] [1690] [46210] [43939] [6703] [12100] [32402] [49461] [30619] [33417]

Bitcoin mining with Bitmain Antminer S9 - how to get ...

Best Efficient GPU For Mining! - https://geni.us/Hp3n ASIC Miners On Amazon? - https://geni.us/dZBiA Or a pretty penny for new 1080 ti's... - https://geni.us... What is the best bitcoin miner to buy in 2020? In this video, we’ll find out by comparing profitability as well as other factors. Mining bitcoin doesn’t have... Finally got my Antminer S9 Bitcoin miner. Breaking down the setup and how much you can expect to earn per year Bitcoin mining. Join Coinbase (FREE $10 BTC): ... Cryptocurrency mining manufacturing companies are scamming us with certain ASIC miners, like Bitmain and their Bitmain Antminer Z15. This miner revolves arou... What are the BEST BITCOIN MINING RIGS in 2020?! Let's review the best Bitcoin miners and their profitability. Bitmain just released the Antminer S19 and S19 ...

#